1 void validate_classifier_multi(char *datacfg, char *filename, char *weightfile)
  2 {
  3     int i, j;
  4     network net = parse_network_cfg(filename);
  5     set_batch_network(&net, 1);
  6     if(weightfile){
  7         load_weights(&net, weightfile);
  8     }
  9     srand(time(0));
 10 
 11     list *options = read_data_cfg(datacfg);//读.data文件到option列表中
 12 
 13     char *label_list = option_find_str(options, "labels", "data/labels.list");
 14     //从读到的.data生成的option列表去找对饮的字段如labels,将labels的配置路径放到label_list指针中,
 15     //然后如果labels的配置路径是"data/labels.list",打印“使用默认配置”字样
 16     char *valid_list = option_find_str(options, "valid", "data/train.list");// l,key,def;  return  def
 17     int classes = option_find_int(options, "classes", 2);
 18     int topk = option_find_int(options, "top", 1);
 19     if (topk > classes) topk = classes;//找的比类别还多
 20 
 21     char **labels = get_labels(label_list);
 22     //将labels.list标签名读到lables字符指针,可以通过labels[i]访问标签
 23     list *plist = get_paths(valid_list);//得到验证集的数据路径
 24     int scales[] = {224, 288, 320, 352, 384};
 25     int nscales = sizeof(scales)/sizeof(scales[0]);
 26 
 27     char **paths = (char **)list_to_array(plist);
 28     int m = plist->size;
 29     free_list(plist);
 30 
 31     float avg_acc = 0;
 32     float avg_topk = 0;
 33     int* indexes = (int*)calloc(topk, sizeof(int));
 34 
 35     for(i = 0; i < m; ++i){
 36         int class_id = -1;//一般用负数初始化
 37         char *path = paths[i];//这里的路径名包括文件名之外的路径吗?
 38         for(j = 0; j < classes; ++j){
 39             if(strstr(path, labels[j])){
 40                 //在path字符串中查找labels[j]字符串第一次出现的位置
 41                 class_id = j;
 42                 //这里实现了数据集在训练过程中的类别的确定。还是看匹配,只要标签在文件名中
 43                 break;
 44             }
 45         }
 46         float* pred = (float*)calloc(classes, sizeof(float));
 47         image im = load_image_color(paths[i], 0, 0);
 48         for(j = 0; j < nscales; ++j){
 49             image r = resize_min(im, scales[j]);
 50             resize_network(&net, r.w, r.h);
 51             float *p = network_predict(net, r.data);
 52             if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1);
 53             axpy_cpu(classes, 1, p, 1, pred, 1);
 54             flip_image(r);
 55             p = network_predict(net, r.data);
 56             axpy_cpu(classes, 1, p, 1, pred, 1);
 57             if(r.data != im.data) free_image(r);
 58         }
 59         free_image(im);
 60         top_k(pred, classes, topk, indexes);
 61         free(pred);
 62         if(indexes[0] == class_id) avg_acc += 1;
 63         for(j = 0; j < topk; ++j){
 64             if(indexes[j] == class_id) avg_topk += 1;
 65         }
 66 
 67         printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
 68     }
 69 }
 70  
 71 
 72 void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top)
 73 {//反初始化主要是类对象的析构
 74     network net = parse_network_cfg_custom(cfgfile, 1, 0);
 75     if(weightfile){
 76         load_weights(&net, weightfile);
 77     }
 78     set_batch_network(&net, 1);
 79     srand(2222222);
 80 
 81     fuse_conv_batchnorm(net);
 82     calculate_binary_weights(net);
 83 
 84     list *options = read_data_cfg(datacfg);
 85 
 86     char *name_list = option_find_str(options, "names", 0);
 87     if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
 88     int classes = option_find_int(options, "classes", 2);
 89     if (top == 0) top = option_find_int(options, "top", 1);
 90     if (top > classes) top = classes;
 91 
 92     int i = 0;
 93     char **names = get_labels(name_list);
 94     clock_t time;
 95     int* indexes = (int*)calloc(top, sizeof(int));
 96     char buff[256];
 97     char *input = buff;
 98     //int size = net.w;
 99     while(1){
100         if(filename){
101             strncpy(input, filename, 256);//将filename的前256个字符复制到input中。
102         }else{
103             printf("Enter Image Path: ");
104             fflush(stdout);
105             input = fgets(input, 256, stdin);
106             if(!input) return;
107             strtok(input, "\n");
108         }
109         image im = load_image_color(input, 0, 0);
110         image r = letterbox_image(im, net.w, net.h);
111         //image r = resize_min(im, size);
112         //resize_network(&net, r.w, r.h);
113         printf("%d %d\n", r.w, r.h);
114 
115         float *X = r.data;
116         time=clock();
117         float *predictions = network_predict(net, X);
118         if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 0);
119         top_k(predictions, net.outputs, top, indexes);
120         //按得分来排top k,indexes是新的排序指针,按升序排列,prediction越大的在indexes里面的id越是靠后。
121         printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
122         for(i = 0; i < top; ++i){
123             int index = indexes[i];
124             //hierarchy是一个树形结构体指针变量。应该是没有的。
125             if(net.hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net.hierarchy->parent[index] >= 0) ? names[net.hierarchy->parent[index]] : "Root");
126             else printf("%s: %f\n",names[index], predictions[index]);
127             //names[index]是分类的对应的类别名称如yb,ye,yf
128             //predictions[index]是推理置信度
129         }
130         if(r.data != im.data) free_image(r);
131         free_image(im);
132         if (filename) break;//可以批量测试,如果filename是False,跳出
133     }
134 }
135