少优化->多优化:
O0 -->> O1 -->> O2 -->> O3
-O0表示没有优化,-O1为缺省值,-O3优化级别最高
英文解析:
`-O '
`-O1 '
Optimize. Optimizing compilation takes somewhat more time, and a
lot more memory for a large function.
With `-O ', the compiler tries to reduce code size and execution
time, without performing any optimizations that take a great deal
of compilation time.
`-O ' turns on the following optimization flags:
-fdefer-pop
-fdelayed-branch
-fguess-branch-probability
-fcprop-registers
-floop-optimize
-fif-conversion
-fif-conversion2
-ftree-ccp
-ftree-dce
-ftree-dominator-opts
-ftree-dse
-ftree-ter
-ftree-lrs
-ftree-sra
-ftree-copyrename
-ftree-fre
-ftree-ch
-funit-at-a-time
-fmerge-constants
`-O ' also turns on `-fomit-frame-pointer ' on machines where doing
so does not interfere with debugging.
`-O ' doesn 't turn on `-ftree-sra ' for the Ada compiler. This
option must be explicitly specified on the command line to be
enabled for the Ada compiler.
`-O2 '
Optimize even more. GCC performs nearly all supported
optimizations that do not involve a space-speed tradeoff. The
compiler does not perform loop unrolling or function inlining when
you specify `-O2 '. As compared to `-O ', this option increases
both compilation time and the performance of the generated code.
`-O2 ' turns on all optimization flags specified by `-O '. It also
turns on the following optimization flags:
-fthread-jumps
-fcrossjumping
-foptimize-sibling-calls
-fcse-follow-jumps -fcse-skip-blocks
-fgcse -fgcse-lm
-fexpensive-optimizations
-fstrength-reduce
-frerun-cse-after-loop -frerun-loop-opt
-fcaller-saves
-fpeephole2
-fschedule-insns -fschedule-insns2
-fsched-interblock -fsched-spec
-fregmove
-fstrict-aliasing
-fdelete-null-pointer-checks
-freorder-blocks -freorder-functions
-falign-functions -falign-jumps
-falign-loops -falign-labels
-ftree-vrp
-ftree-pre
Please note the warning under `-fgcse ' about invoking `-O2 ' on
programs that use computed gotos.
`-O3 '
Optimize yet more. `-O3 ' turns on all optimizations specified by
`-O2 ' and also turns on the `-finline-functions ',
`-funswitch-loops ' and `-fgcse-after-reload ' options.
`-O0 '
Do not optimize. This is the default.
///==================另外还有个Os选项==========================
http://hi.baidu.com/ah__fu/blog/item/cc9fd19b801948bdc9eaf4b3.html
在研究编译驱动的makefile的时候,发现GCC的命令行里面有一个-Os的优化选项。
遍查GCC文档,发现了-O0, -O1, -O2, -O3,就是没有发现-Os。
祭出GOOGLE大法搜了一下,终于发现这篇文章说明了-Os的作用:
http://www.linuxjournal.com/article/7269
原来-Os相当于-O2.5。是使用了所有-O2的优化选项,但又不缩减代码尺寸的方法。
详细的说明如下:
Level 2.5 (-Os)
The special optimization level (-Os or size) enables all -O2 optimizations that do not increase code size; it puts the emphasis on size over speed. This includes all second-level optimizations, except for the alignment optimizations. The alignment optimizations skip space to align functions, loops, jumps and labels to an address that is a multiple of a power of two, in an architecture-dependent manner. Skipping to these boundaries can increase performance as well as the size of the resulting code and data spaces; therefore, these particular optimizations are disabled. The size optimization level is enabled as:
gcc -Os -o test test.cIn gcc 3.2.2, reorder-blocks is enabled at -Os, but in gcc 3.3.2 reorder-blocks is disabled.
==============================
补充:在GCC的官方文档里又发现了关于-Os的说明:
http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/Optimize-Options.html#Optimize-Options
backtrace与fomit-frame-pointer选项
事实上gcc的所有级别的优化(-O, -O2, -O3等)都会打开-fomit-frame-pointer,该选项的功能是函数调用时不保存frame指针,在ARM上就是fp,故我们无法按照 APCS中的约定来回溯调用栈。但是GDB中仍然可以使用bt命令看到调用栈,为什么?得知GDB v6之后都是支持DWARF2的,也就意味着它可以不依赖fp来回溯调用栈(详见 http://gcc.gnu.org/ml/gcc/2003-10/msg00322.html)。
看来想在代码中动态显示调用栈而又不希望使用GDB的朋友,只能在编译时关掉-fomit-frame-pointer了。
//==================gcc参数大全:===========================
[介绍]
gcc and g++分别是gnu的c & c++编译器 gcc/g++在执行编译工作的时候,总共需要4步
1.预处理,生成.i的文件[预处理器cpp]
2.将预处理后的文件不转换成汇编语言,生成文件.s[编译器egcs]
3.有汇编变为目标代码(机器代码)生成.o的文件[汇编器as]
4.连接目标代码,生成可执行程序[链接器ld]
[参数详解]
-x language filename
设定文件所使用的语言,使后缀名无效,对以后的多个有效.也就是根据约定C语言的后缀名称是.c的,而C++的后缀名是.C或者.cpp,如果你很个性, 决定你的C代码文件的后缀名是.pig 哈哈,那你就要用这个参数,这个参数对他后面的文件名都起作用,除非到了下一个参数的使用。
可以使用的参数吗有下面的这些
`c', `objective-c', `c-header', `c++', `cpp-output', `assembler', and `assembler-with-cpp'.
看到英文,应该可以理解的。
例子用法:
gcc -x c hello.pig
-x none filename
关掉上一个选项,也就是让gcc根据文件名后缀,自动识别文件类型
例子用法:
gcc -x c hello.pig -x none hello2.c
-c
只激活预处理,编译,和汇编,也就是他只把程序做成obj文件
例子用法:
gcc -c hello.c
他将生成.o的obj文件
-S
只激活预处理和编译,就是指把文件编译成为汇编代码。
例子用法
gcc -S hello.c
他将生成.s的汇编代码,你可以用文本编辑器察看
-E
只激活预处理,这个不生成文件,你需要把它重定向到一个输出文件里面.
例子用法:
gcc -E hello.c > pianoapan.txt
gcc -E hello.c | more
慢慢看吧,一个hello word 也要与处理成800行的代码
-o
制定目标名称,缺省的时候,gcc 编译出来的文件是a.out,很难听,如果你和我有同感,改掉它,哈哈
例子用法
gcc -o hello.exe hello.c (哦,windows用习惯了)
gcc -o hello.asm -S hello.c
-pipe
使用管道代替编译中临时文件,在使用非gnu汇编工具的时候,可能有些问题
gcc -pipe -o hello.exe hello.c
-ansi
关闭gnu c中与ansi c不兼容的特性,激活ansi c的专有特性(包括禁止一些asm inline typeof关键字,以及UNIX,vax等预处理宏,
-fno-asm
此选项实现ansi选项的功能的一部分,它禁止将asm,inline和typeof用作关键字。
-fno-strict-prototype
只对g++起作用,使用这个选项,g++将对不带参数的函数,都认为是没有显式的对参数的个数和类型说明,而不是没有参数.
而gcc无论是否使用这个参数,都将对没有带参数的函数,认为城没有显式说明的类型
-fthis-is-varialble
就是向传统c++看齐,可以使用this当一般变量使用.
-fcond-mismatch
允许条件表达式的第二和第三参数类型不匹配,表达式的值将为void类型
-funsigned-char
-fno-signed-char
-fsigned-char
-fno-unsigned-char
这四个参数是对char类型进行设置,决定将char类型设置成unsigned char(前两个参数)或者 signed char(后两个参数)
-include file
包含某个代码,简单来说,就是便以某个文件,需要另一个文件的时候,就可以用它设定,功能就相当于在代码中使用#include<filename>
例子用法:
gcc hello.c -include /root/pianopan.h
-imacros file
将file文件的宏,扩展到gcc/g++的输入文件,宏定义本身并不出现在输入文件中
-Dmacro
相当于C语言中的#define macro
-Dmacro=defn
相当于C语言中的#define macro=defn
-Umacro
相当于C语言中的#undef macro
-undef
取消对任何非标准宏的定义
-Idir
在你是用#include"file"的时候,gcc/g++会先在当前目录查找你所制定的头文件,如果没有找到,他回到缺省的头文件目录找,如果使用-I制定了目录,他
回先在你所制定的目录查找,然后再按常规的顺序去找.
对于#include<file>,gcc/g++会到-I制定的目录查找,查找不到,然后将到系统的缺省的头文件目录查找
-I-
就是取消前一个参数的功能,所以一般在-Idir之后使用
-idirafter dir
在-I的目录里面查找失败,讲到这个目录里面查找.
-iprefix prefix
-iwithprefix dir
一般一起使用,当-I的目录查找失败,会到prefix+dir下查找
-nostdinc
使编译器不再系统缺省的头文件目录里面找头文件,一般和-I联合使用,明确限定头文件的位置
-nostdin C++
规定不在g++指定的标准路经中搜索,但仍在其他路径中搜索,.此选项在创libg++库使用
-C
在预处理的时候,不删除注释信息,一般和-E使用,有时候分析程序,用这个很方便的
-M
生成文件关联的信息。包含目标文件所依赖的所有源代码你可以用gcc -M hello.c来测试一下,很简单。
-MM
和上面的那个一样,但是它将忽略由#include<file>造成的依赖关系。
-MD
和-M相同,但是输出将导入到.d的文件里面
-MMD
和-MM相同,但是输出将导入到.d的文件里面
-Wa,option
此选项传递option给汇编程序;如果option中间有逗号,就将option分成多个选项,然后传递给会汇编程序
-Wl.option
此选项传递option给连接程序;如果option中间有逗号,就将option分成多个选项,然后传递给会连接程序.
-llibrary
制定编译的时候使用的库
例子用法
gcc -lcurses hello.c
使用ncurses库编译程序
-Ldir
制定编译的时候,搜索库的路径。比如你自己的库,可以用它制定目录,不然
编译器将只在标准库的目录找。这个dir就是目录的名称。
-O0
-O1
-O2
-O3
编译器的优化选项的4个级别,-O0表示没有优化,-O1为缺省值,-O3优化级别最高
-g
只是编译器,在编译的时候,产生调试信息。
-gstabs
此选项以stabs格式声称调试信息,但是不包括gdb调试信息.
-gstabs+
此选项以stabs格式声称调试信息,并且包含仅供gdb使用的额外调试信息.
-ggdb
此选项将尽可能的生成gdb的可以使用的调试信息.
-static
此选项将禁止使用动态库,所以,编译出来的东西,一般都很大,也不需要什么
动态连接库,就可以运行.
-share
此选项将尽量使用动态库,所以生成文件比较小,但是需要系统由动态库.
-traditional
试图让编译器支持传统的C语言特性
[参考资料]
-Linux/UNIX高级编程
中科红旗软件技术有限公司编著.清华大学出版社出版
-Gcc man page
[ChangeLog]
-2002-08-10
ver 0.1 发布最初的文档
-2002-08-11
ver 0.11 修改文档格式
-2002-08-12
ver 0.12 加入了对静态库,动态库的参数
-2002-08-16
ver 0.16 增加了gcc编译的4个阶段的命令
运行 gcc/egcs
**********运行 gcc/egcs***********************
GCC 是 GNU 的 C 和 C++ 编译器。实际上,GCC 能够编译三种语言:C、C++ 和 Object C(C 语言的一种面向对象扩展)。利用 gcc 命令可同时编译并连接 C 和 C++ 源程序。
如果你有两个或少数几个 C 源文件,也可以方便地利用 GCC 编译、连接并生成可执行文件。例如,假设你有两个源文件 main.c 和 factorial.c 两个源文件,现在要编译生成一个计算阶乘的程序。
代码:
-----------------------
清单 factorial.c
-----------------------
int factorial (int n)
{
if (n <= 1)
return 1;
else
return factorial (n - 1) * n;
}
-----------------------
清单 main.c
-----------------------
#include <stdio.h>
#include <unistd.h>
int factorial (int n);
int main (int argc, char **argv)
{
int n;
if (argc < 2)
{
printf ("Usage: %s n\n", argv [0]);
return -1;
}
else
{
n = atoi (argv[1]);
printf ("Factorial of %d is %d.\n", n, factorial (n));
}
return 0;
}
-----------------------
利用如下的命令可编译生成可执行文件,并执行程序:
$ gcc -o factorial main.c factorial.c
$ ./factorial 5
Factorial of 5 is 120.
GCC 可同时用来编译 C 程序和 C++ 程序。一般来说,C 编译器通过源文件的后缀名来判断是 C 程序还是 C++ 程序。在 Linux 中,C 源文件的后缀名为 .c,而 C++ 源文件的后缀名为 .C 或 .cpp。但是,gcc 命令只能编译 C++ 源文件,而不能自动和 C++ 程序使用的库连接。因此,通常使用 g++ 命令来完成 C++ 程序的编译和连接,该程序会自动调用 gcc 实现编译。假设我们有一个如下的 C++ 源文件(hello.C):
#include <iostream>
void main (void)
{
cout << "Hello, world!" << endl;
}
则可以如下调用 g++ 命令编译、连接并生成可执行文件:
$ g++ -o hello hello.C
$ ./hello
Hello, world!
**********************gcc/egcs 的主要选项*********
gcc 命令的常用选项
选项 解释
-ansi 只支持 ANSI 标准的 C 语法。这一选项将禁止 GNU C 的某些特色,
例如 asm 或 typeof 关键词。
-c 只编译并生成目标文件。
-DMACRO 以字符串“1”定义 MACRO 宏。
-DMACRO=DEFN 以字符串“DEFN”定义 MACRO 宏。
-E 只运行 C 预编译器。
-g 生成调试信息。GNU 调试器可利用该信息。
-IDIRECTORY 指定额外的头文件搜索路径DIRECTORY。
-LDIRECTORY 指定额外的函数库搜索路径DIRECTORY。
-lLIBRARY 连接时搜索指定的函数库LIBRARY。
-m486 针对 486 进行代码优化。
-o FILE 生成指定的输出文件。用在生成可执行文件时。
-O0 不进行优化处理。
-O 或 -O1 优化生成代码。
-O2 进一步优化。
-O3 比 -O2 更进一步优化,包括 inline 函数。
-shared 生成共享目标文件。通常用在建立共享库时。
-static 禁止使用共享连接。
-UMACRO 取消对 MACRO 宏的定义。
-w 不生成任何警告信息。
-Wall 生成所有警告信息。
源码snprintf/strncpy/strlcpy速度测试代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <sys/time.h> #include <sched.h> #define COUNT 10000000 //#define COUNT 10000000 #define MILLION 1000000L size_t VisCore_Strlcpy(char *dst, const char *src, size_t n) { const char *src0 = src; char dummy[1]; if (!n) { dst = dummy; } else { --n; } while ((*dst = *src) != 0) { if (n) { --n; ++dst; } ++src; } return src - src0; } int main(void) { int i; long long tdif; struct timeval tend, tstart; char data[1024]; char *buf1 = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaababbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb" "aaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb" "ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"; char *buf = "aaaaaaaaaaaaaaaaaaaaaaaa"; if (gettimeofday(&tstart, NULL) == -1) { fprintf(stderr, "Failed to get start time\n"); return 1; } #if 1 for (i = 0; i < COUNT; i++) { //snprintf(data, sizeof(data), "%s", buf); //snprintf(data, sizeof(data), "%s", buf); //strlcpy(data, buf, sizeof(data)); VisCore_Strlcpy(data, buf, sizeof(data)); //strncpy(data, buf, sizeof(data)); } #endif if (gettimeofday(&tend, NULL) == -1) { fprintf(stderr, "Failed to get end time\n"); return 1; } tdif = MILLION * (tend.tv_sec - tstart.tv_sec) + (tend.tv_usec - tstart.tv_usec); //printf("nanosleep() time is %lld us\n", tdif); printf("nanosleep() time is %lld us\n", tdif/COUNT); return 0; }
arm-hisiv100nptl-linux-gcc 编译后不同级别(默认,O0, O1, O2, O3, Os)可执行文件大小对应的结果:
strip之前: yinguicai@Cpl-IBP-Product:~/data/tmp/time/tmp$ ll 总用量 80 drwxrwxr-x 2 yinguicai yinguicai 4096 12月 13 09:53 ./ drwxrwxr-x 3 yinguicai yinguicai 4096 12月 13 09:53 ../ -rwxrwxr-x 1 yinguicai yinguicai 11161 12月 13 09:53 a.out-default* -rwxrwxr-x 1 yinguicai yinguicai 11161 12月 13 09:53 a.out-O0* -rwxrwxr-x 1 yinguicai yinguicai 10809 12月 13 09:53 a.out-O1* -rwxrwxr-x 1 yinguicai yinguicai 10817 12月 13 09:53 a.out-O2* -rwxrwxr-x 1 yinguicai yinguicai 10849 12月 13 09:53 a.out-O3* -rwxrwxr-x 1 yinguicai yinguicai 10736 12月 13 09:53 a.out-Os* yinguicai@Cpl-IBP-Product:~/data/tmp/time/tmp$ arm-hisiv100nptl-linux-strip a.out-default yinguicai@Cpl-IBP-Product:~/data/tmp/time/tmp$ arm-hisiv100nptl-linux-strip a.out-O0 yinguicai@Cpl-IBP-Product:~/data/tmp/time/tmp$ arm-hisiv100nptl-linux-strip a.out-O1 yinguicai@Cpl-IBP-Product:~/data/tmp/time/tmp$ arm-hisiv100nptl-linux-strip a.out-O2 yinguicai@Cpl-IBP-Product:~/data/tmp/time/tmp$ arm-hisiv100nptl-linux-strip a.out-O3 yinguicai@Cpl-IBP-Product:~/data/tmp/time/tmp$ arm-hisiv100nptl-linux-strip a.out-Os strip之后: yinguicai@Cpl-IBP-Product:~/data/tmp/time/tmp$ ll 总用量 56 drwxrwxr-x 2 yinguicai yinguicai 4096 12月 13 09:54 ./ drwxrwxr-x 3 yinguicai yinguicai 4096 12月 13 09:53 ../ -rwxrwxr-x 1 yinguicai yinguicai 6440 12月 13 09:54 a.out-default* -rwxrwxr-x 1 yinguicai yinguicai 6440 12月 13 09:54 a.out-O0* -rwxrwxr-x 1 yinguicai yinguicai 6092 12月 13 09:54 a.out-O1* -rwxrwxr-x 1 yinguicai yinguicai 6100 12月 13 09:54 a.out-O2* -rwxrwxr-x 1 yinguicai yinguicai 6128 12月 13 09:54 a.out-O3* -rwxrwxr-x 1 yinguicai yinguicai 6016 12月 13 09:54 a.out-Os*
arm-hisiv100nptl-linux-gcc 编译后不同级别(默认,O0, O1, O2, O3, Os)可执行文件运行速度对应的结果:
源、目标长度大小 相关函数 | dst:24 src:678 | dst:680 src:678 | dst:1024 src:678 | dst:1024 src:24 |
VisCore_Strlcpy(us) O3 优化 | 2.934201 | 2.571703 | 2.571759 | 0.108671 |
VisCore_Strlcpy(us) O2 优化 | 2.934305 | 2.571704 | 2.57172 | 0.108673 |
VisCore_Strlcpy(us) Os 优化 | 3.678672 | 3.678688 | 3.678671 | 0.185096 |
VisCore_Strlcpy(us) O1 优化 | 3.070963 | 3.070872 | 3.070882 | 0.163555 |
VisCore_Strlcpy(us) O0 默认 | 16.902501 | 18.300108 | 18.302474 | 0.710118 |
相关结论:
1、gcc默认优化级别为O0 2、优化级别越高,通常情况下生成的可执行文件越小。当优化到一定程度后,可执行文件可能会变大,如O2比O1大 3、当优化到一定程度后,可能就不会再次优化(与代码有关系),如O2和O3一样 4、Os使用所有O2级别的优化,但对齐优化除外。 对齐优化按照体系结构相关的方式将函数,循环,jump和label对准为2的幂的倍数的地址(此时可执行文件会变大)。 对齐优化可以提高性能,但同时也增加了代码和数据空间的大小。Os强调可执行文件的大小而不是速度。所以我们看到Os生成的可执行文件较O2要小。 5、通过以上数据初步表明Os较O2 strip后,空间减少了1.4%=(6100-6016)/6016,性能却牺牲了25%=(3.67-2.93)/2.93。当然,这虽只是个个例,但也能说明一定的问题。
不同级别优化后运行速度顺序一般为:O0 < Os < O1 < O2 <= O3
不同级别优化后可执行文件大小(未strip)顺序一般为:O0 > O3 >= O2 > O1 > Os
关于静态链接和动态链接:
源、目标长度大小 相关函数(O2 优化) | dst:24 src:678 | dst:680 src:678 | dst:1024 src:678 | dst:1024 src:24 |
strlcpy(us) 动态 | 3.681469 | 3.681542 | 3.681374 | 0.174848 |
VisCore_Strlcpy(us) 动态 | 2.934305 | 2.571704 | 2.57172 | 0.108673 |
strlcpy(us) 静态 | 4.040356 | 4.040297 | 4.040223 | 0.213049 |
VisCore_Strlcpy(us) 静态 | 2.572816 | 2.572772 | 2.571733 | 0.119976 |
动态链接和静态连接的优缺点
注意:根据数据判断,静态链接在执行速度上较动态链接有快有慢,所以上面这篇博文中的描述有些问题
aa
一个奔跑的程序员