from __future__ import print_function import sys from pyspark import SparkContext """ Create test table in HBase first: hbase(main):001:0> create 'test', 'f1' 0 row(s) in 0.7840 seconds > hbase_outputformat <host> test row1 f1 q1 value1 > hbase_outputformat <host> test row2 f1 q1 value2 > hbase_outputformat <host> test row3 f1 q1 value3 > hbase_outputformat <host> test row4 f1 q1 value4 hbase(main):002:0> scan 'test' ROW COLUMN+CELL row1 column=f1:q1, timestamp=1405659615726, value=value1 row2 column=f1:q1, timestamp=1405659626803, value=value2 row3 column=f1:q1, timestamp=1405659640106, value=value3 row4 column=f1:q1, timestamp=1405659650292, value=value4 4 row(s) in 0.0780 seconds """ if __name__ == "__main__": if len(sys.argv) != 7: print(""" Usage: hbase_output <host> <table> <row> <family> <qualifier> <value> Run with example jar: ./bin/spark-submit --driver-class-path /path/to/example/jar \ /path/to/examples/hbase_outputformat.py <args> Assumes you have created <table> with column family <family> in HBase running on <host> already """, file=sys.stderr) exit(-1) host = sys.argv[1] table = sys.argv[2] sc = SparkContext(appName="HBaseOutputFormat") conf = {"hbase.zookeeper.quorum": host, "hbase.mapred.outputtable": table, "mapreduce.outputformat.class": "org.apache.hadoop.hbase.mapreduce.TableOutputFormat", "mapreduce.job.output.key.class": "org.apache.hadoop.hbase.io.ImmutableBytesWritable", "mapreduce.job.output.value.class": "org.apache.hadoop.io.Writable"} keyConv = "org.apache.spark.examples.pythonconverters.StringToImmutableBytesWritableConverter" valueConv = "org.apache.spark.examples.pythonconverters.StringListToPutConverter" sc.parallelize([sys.argv[3:]]).map(lambda x: (x[0], x)).saveAsNewAPIHadoopDataset( conf=conf, keyConverter=keyConv, valueConverter=valueConv) sc.stop()
需要的Jar包:
hadoop-common-2.6.0-.jar
hbase-0.94.0.jar
spark-examples.jar(spark 1.6)
这里需要强调jar包版本,因为在Hadoop包不断的演变中很多的jar包以及有用的类在变化,甚至是消失。