快速排序(QuickSort)
划分的关键是要求出基准记录所在的位置pivotpos,编程时候的关键点

快速排序:

既然能把冒泡KO掉,马上就激起我们的兴趣,tnd快排咋这么快,一定要好好研究一下。

首先上图:    快速排序(QuickSort)_数组

从图中我们可以看到:

left指针,right指针,base参照数。

其实思想是蛮简单的,就是通过第一遍的遍历(让left和right指针重合)来找到数组的切割点。

第一步:首先我们从数组的left位置取出该数(20)作为基准(base)参照物。

第二步:从数组的right位置向前找,一直找到比(base)小的数,

            如果找到,将此数赋给left位置(也就是将10赋给20),

            此时数组为:10,40,50,10,60,

            left和right指针分别为前后的10。

第三步:从数组的left位置向后找,一直找到比(base)大的数,

             如果找到,将此数赋给right的位置(也就是40赋给10),

             此时数组为:10,40,50,40,60,

             left和right指针分别为前后的40。

第四步:重复“第二,第三“步骤,直到left和right指针重合,

             最后将(base)插入到40的位置,

             此时数组值为: 10,20,50,40,60,至此完成一次排序。

第五步:此时20已经潜入到数组的内部,20的左侧一组数都比20小,20的右侧作为一组数都比20大,

            以20为切入点对左右两边数按照"第一,第二,第三,第四"步骤进行,最终快排大功告成。

 快速排序具有最好的平均性能(average behavior),但最坏性能(worst case behavior)和插入排序

相同,也是O(n^2)。比如一个序列5,4,3,2,1,要排为1,2,3,4,5。按照快速排序方法,每次只会有一个数据进入正确顺序,不能把数据分成大小相当的两份,很明显,排序的过程就成了一个歪脖子树,树的深度为n,那时间复杂度就成了O(n^2)。尽管如此,需要排序的情况几乎都是乱序的,自然性能就保证了。据书上的测试图来看,在数据量小于20的时候,插入排序具有最好的性能。当大于20时,快速排序具有最好的性能,归并(merge sort)和堆排序(heap sort)也望尘莫及,尽管复杂度都为nlog2(n)。1、算法思想

     快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。


(1) 分治法的基本思想

     分治法的基本思想是:将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。


(2)快速排序的基本思想

     设当前待排序的无序区为R[low..high],利用分治法可将快速排序的基本思想描述为:

①分解: 

     在R[low..high]中任选一个记录作为基准(Pivot),以此基准将当前无序区划分为左、右两个较小的子区间R[low..pivotpos-1)和R[pivotpos+1..high],并使左边子区间中所有记录的关键字均小于等于基准记录(不妨记为pivot)的关键字pivot.key,右边的子区间中所有记录的关键字均大于等于pivot.key,而基准记录pivot则位于正确的位置(pivotpos)上,它无须参加后续的排序。

  注意:

     划分的关键是要求出基准记录所在的位置pivotpos。划分的结果可以简单地表示为(注意pivot=R[pivotpos]):

     R[low..pivotpos-1].keys≤R[pivotpos].key≤R[pivotpos+1..high].keys

                  其中low≤pivotpos≤high。

②求解: 

     通过递归调用快速排序对左、右子区间R[low..pivotpos-1]和R[pivotpos+1..high]快速排序。

③组合: 

     因为当"求解"步骤中的两个递归调用结束时,其左、右两个子区间已有序。对快速排序而言,"组合"步骤无须做什么,可看作是空操作。


2、快速排序算法QuickSort

  void QuickSort(SeqList R,int low,int high)

   { //对R[low..high]快速排序

     int pivotpos; //划分后的基准记录的位置

     if(low<high){//仅当区间长度大于1时才须排序

        pivotpos=Partition(R,low,high); //对R[low..high]做划分

        QuickSort(R,low,pivotpos-1); //对左区间递归排序

        QuickSort(R,pivotpos+1,high); //对右区间递归排序

      }

    } //QuickSort


  注意:

     为排序整个文件,只须调用QuickSort(R,1,n)即可完成对R[l..n]的排序。




#include<stdio.h>
void quickSort(int a[],int left,int right)
{
int i=left;
int j=right;
int temp=a[left];
if(left>=right)
return;
while(i!=j)
{
while(i<j&&a[j]>=temp)
j--;
if(j>i)
a[i]=a[j];//a[i]已经赋值给temp,所以直接将a[j]赋值给a[i],赋值完之后a[j],有空位
while(i<j&&a[i]<=temp)
i++;
if(i<j)
a[j]=a[i];
}
a[i]=temp;//把基准插入,此时i与j已经相等R[low..pivotpos-1].keys≤R[pivotpos].key≤R[pivotpos+1..high].keys
quickSort(a,left,i-1);/*递归左边*/
quickSort(a,i+1,right);/*递归右边*/
}
int main()
{
int a[9]={8,2,6,12,1,9,5,5,10};
int i;
quickSort(a,0,8);/*排好序的结果*/
for(i=0;i<8;i++)
printf("%4d",a[i]);
getchar();
return 0;
}




#include<stdio.h>
int partition(int a[],int left,int right)
{
int i=left;
int j=right;
int temp=a[i];
while(i<j)
{
while(i<j && a[j]>=temp)
j--;
if(i<j)
a[i]=a[j];
while(i<j && a[i]<=temp)
i++;
if(i<j)
a[j]=a[i];
}
a[i]=temp;
return i;
}
void quickSort(int a[],int left,int right)
{
int dp;
if(left<right)
{
dp=partition(a,left,right);
quickSort(a,left,dp-1);
quickSort(a,dp+1,right);
}
}
int main()
{
int a[9]={5,4,9,1,7,6,2,3,8};
quickSort(a,0,8);
for(int i=0;i<9;i++)
{
printf("%d ",a[i]);
}
return 0;
}


 快速排序的最坏情况基于每次划分对主元的选择。基本的快速排序选取第一个元素作为主元。这样在数组已经有序的情况下,每次划分将得到最坏的结果。一种比较常见的优化方法是随机化算法,即随机选取一个元素作为主元。这种情况下虽然最坏情况仍然是O(n^2),但最坏情况不再依赖于输入数据,而是由于随机函数取值不佳。实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多数输入数据达到O(nlogn)的期望时间复杂度。一位前辈做出了一个精辟的总结:“随机化快速排序可以满足一个人一辈子的人品需求。”

  随机化快速排序的唯一缺点在于,一旦输入数据中有很多的相同数据,随机化的效果将直接减弱。对于极限情况,即对于n个相同的数排序,随机化快速排序的时间复杂度将毫无疑问的降低到O(n^2)。解决方法是用一种方法进行扫描,使没有交换的情况下主元保留在原位置。

 



------------------越是喧嚣的世界,越需要宁静的思考------------------ 合抱之木,生于毫末;九层之台,起于垒土;千里之行,始于足下。 积土成山,风雨兴焉;积水成渊,蛟龙生焉;积善成德,而神明自得,圣心备焉。故不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不能十步;驽马十驾,功在不舍。锲而舍之,朽木不折;锲而不舍,金石可镂。蚓无爪牙之利,筋骨之强,上食埃土,下饮黄泉,用心一也。蟹六跪而二螯,非蛇鳝之穴无可寄托者,用心躁也。