01接口的概念 A:接口的概念 接口是功能的集合,同样可看做是一种数据类型,是比抽象类更为抽象的”类”。 接口只描述所应该具备的方法,并没有具体实现,具体的实现由接口的实现类(相当于接口的子类)来完成。这样将功能的定义与实现分离,优化了程序设计。 请记住:一切事物均有功能,即一切事物均有接口。 02接口的定义 A: 接口的定义 与定义类的class不同,接口定义时需要使用interface关键字。 定义接口所在的仍为.java文件,虽然声明时使用的为interface关键字的编译后仍然会产生.class文件。这点可以让我们将接口看做是一种只包含了功能声明的特殊类。 B : 定义格式 public interface 接口名 { 抽象方法1; 抽象方法2; 抽象方法3; } C: 定义步骤 使用interface代替了原来的class,其他步骤与定义类相同: 接口中的方法均为公共访问的抽象方法 接口中无法定义普通的成员变量 03接口的实现类 A: 类与接口的关系 类与接口的关系为实现关系,即类实现接口。实现的动作类似继承,只是关键字不同,实现使用implements。 其他类(实现类)实现接口后,就相当于声明:”我应该具备这个接口中的功能”。实现类仍然需要重写方法以实现具体的功能。 B: 类实现接口的格式 class 类 implements 接口 { 重写接口中方法 } C:注意事项 在类实现接口后,该类就会将接口中的抽象方法继承过来,此时该类需要重写该抽象方法,完成具体的逻辑。 接口中定义功能,当需要具有该功能时,可以让类实现该接口,只声明了应该具备该方法,是功能的声明。 在具体实现类中重写方法,实现功能,是方法的具体实现。 04接口中成员变量的特点 A:成员变量特点 a 接口中可以定义变量,但是变量必须有固定的修饰符修饰,public static final 所以接口中的变量也称之为常量,其值不能改变。后面我们会讲解static与final关键字 B:案例 interface Demo { ///定义一个名称为Demo的接口。 public static final int NUM = 3;// NUM的值不能改变 } 05接口中成员方法的特点 A: 成员方法特点 a 接口中可以定义方法,方法也有固定的修饰符,public abstract b 子类必须覆盖掉接口中所有的抽象方法后,子类才可以实例化。否则子类是一个抽象类。 B: 案例 interface Demo { ///定义一个名称为Demo的接口。 public abstract void show1(); public abstract void show2(); } //定义子类去覆盖接口中的方法。类与接口之间的关系是 实现。通过 关键字 implements class DemoImpl implements Demo { //子类实现Demo接口。 //重写接口中的方法。 public void show1(){} public void show2(){} } 06实现类还是一个抽象类 A: 接口的实现类 一个类如果实现类接口,有两种操作方法: 第一:实现类是非抽象类,就需要重写接口中所有的抽象方法. 第二:实现类也声明为抽象类,那么实现类可以不重写接口中的抽象方法。 07类和接口的多实现 A:接口的多实现 了解了接口的特点后,那么想想为什么要定义接口,使用抽象类描述也没有问题,接口到底有啥用呢? 接口最重要的体现:解决多继承的弊端。将多继承这种机制在java中通过多实现完成了。 B 多实现的优点 怎么解决多继承的弊端呢? 弊端:多继承时,当多个父类中有相同功能时,子类调用会产生不确定性。 其实核心原因就是在于多继承父类中功能有主体,而导致调用运行时,不确定运行哪个主体内容。 为什么多实现能解决了呢? 因为接口中的功能都没有方法体,由子类来明确。 08类在继承类的同时实现多接口 A: 继承的同时实现接口 接口和类之间可以通过实现产生关系,同时也学习了类与类之间可以通过继承产生关系。当一个类已经继承了一个父类,它又需要扩展额外的功能,这时接口就派上用场了。 子类通过继承父类扩展功能,通过继承扩展的功能都是子类应该具备的基础功能。如果子类想要继续扩展其他类中的功能呢?这时通过实现接口来完成。 接口的出现避免了单继承的局限性。父类中定义的事物的基本功能。接口中定义的事物的扩展功能。 09接口的多继承 A: 接口的多继承 学习类的时候,知道类与类之间可以通过继承产生关系,接口和类之间可以通过实现产生关系,那么接口与接口之间会有什么关系。 多个接口之间可以使用extends进行继承。 在开发中如果多个接口中存在相同方法,这时若有个类实现了这些接口,那么就要实现接口中的方法,由于接口中的方法是抽象方法,子类实现后也不会发生调用的不确定性。 10接口思想 A:接口的思想 B: 接口的好处 总结:接口在开发中的它好处 1、接口的出现扩展了功能。 2、接口其实就是暴漏出来的规则。 3、接口的出现降低了耦合性,即设备与设备之间实现了解耦。 11接口和抽象类的区别 接口和抽象类区别总结 相同点: 都位于继承的顶端,用于被其他类实现或继承; 都不能直接实例化对象; 都包含抽象方法,其子类都必须覆写这些抽象方法; 区别: 抽象类为部分方法提供实现,避免子类重复实现这些方法,提高代码重用性;接口只能包含抽象方法; 一个类只能继承一个直接父类(可能是抽象类),却可以实现多个接口;(接口弥补了Java的单继承) 抽象类是这个事物中应该具备的你内容, 继承体系是一种 is..a关系 接口是这个事物中的额外内容,继承体系是一种 like..a关系 二者的选用: 优先选用接口,尽量少用抽象类; 需要定义子类的行为,又要为子类提供共性功能时才选用抽象类; 12多态概述 A: 多态概述 多态是继封装、继承之后,面向对象的第三大特性。 现实事物经常会体现出多种形态,如学生,学生是人的一种,则一个具体的同学张三既是学生也是人,即出现两种形态。 Java作为面向对象的语言,同样可以描述一个事物的多种形态。如Student类继承了Person类,一个Student的对象便既是Student,又是Person。 Java中多态的代码体现在一个子类对象(实现类对象)既可以给这个子类(实现类对象)引用变量赋值,又可以给这个子类(实现类对象)的父类(接口)变量赋值。 如Student类可以为Person类的子类。那么一个Student对象既可以赋值给一个Student类型的引用,也可以赋值给一个Person类型的引用。 最终多态体现为父类引用变量可以指向子类对象。 多态的前提是必须有子父类关系或者类实现接口关系,否则无法完成多态。 在使用多态后的父类引用变量调用方法时,会调用子类重写后的方法。 13多态调用的三种格式 A:多态的定义格式: 就是父类的引用变量指向子类对象 父类类型 变量名 = new 子类类型(); 变量名.方法名(); B: 普通类多态定义的格式 父类 变量名 = new 子类(); 举例:
public class Father { public void say() { System.out.println("This is Father's word"); myhobby(); } public void myhobby() { System.out.println("This is Father's hobby"); } public class Son extends Father { private String sonname; public String getSonname() { return sonname; } public void setSonname(String sonname) { this.sonname = sonname; } public void say(){ System.out.println("This is Son's word"); } public void myhobby(String sonname){ System.out.println("This's Son's hobby for String " + sonname); } }
class Fu {} class Zi extends Fu {} //类的多态使用 Fu f = new Zi();
public class testDuotai { public static void main(String[] args) { Father father1 = new Son(); System.out.println("实例化一个Son对象,用父亲接收"); father1.say(); father1.myhobby(); Son son = new Son(); System.out.println("实例化一个Son对象,用Son接收"); son.say(); son.myhobby(); son.myhobby(son.getSonname()); } }
C: 抽象类多态定义格式 抽象类 变量名 = new 抽象类子类();
举例: abstract class Fu { public abstract void method(); }
class Zi extends Fu { public void method(){ System.out.println(“重写父类抽象方法”); } }
//类的多态使用 Fu fu= new Zi(); D: 接口多态定义的格式 接口 变量名 = new 接口实现类(); 如: interface Fu { public abstract void method(); } class Zi implements Fu { public void method(){ System.out.println(“重写接口抽象方法”); } } //接口的多态使用 Fu fu = new Zi(); E: 注意事项 同一个父类的方法会被不同的子类重写。在调用方法时,调用的为各个子类重写后的方法。 如 Person p1 = new Student(); Person p2 = new Teacher(); p1.work(); //p1会调用Student类中重写的work方法 p2.work(); //p2会调用Teacher类中重写的work方法 当变量名指向不同的子类对象时,由于每个子类重写父类方法的内容不同,所以会调用不同的方法。 14多态成员方法的特点 A: 掌握了多态的基本使用后,那么多态出现后类的成员有啥变化呢?前面学习继承时,我们知道子父类之间成员变量有了自己的特定变化, 那么当多态出现后,成员变量在使用上有没有变化呢? 多态出现后会导致子父类中的成员变量有微弱的变化 B: 代码演示 class Fu { int num = 4; } class Zi extends Fu { int num = 5; } class Demo { public static void main(String[] args) { Fu f = new Zi(); System.out.println(f.num); Zi z = new Zi(); System.out.println(z.num); } } C: 多态成员变量 当子父类中出现同名的成员变量时,多态调用该变量时: 编译时期:参考的是引用型变量所属的类中是否有被调用的成员变量。没有,编译失败。 运行时期:也是调用引用型变量所属的类中的成员变量。 简单记:编译和运行都参考等号的左边。编译运行看左边。 D: 多态出现后会导致子父类中的成员方法有微弱的变化。看如下代码 class Fu { int num = 4; void show() { System.out.println("Fu show num"); } } class Zi extends Fu { int num = 5; void show() { System.out.println("Zi show num"); } } class Demo { public static void main(String[] args) { Fu f = new Zi(); f.show(); } } E: 多态成员方法 编译时期:参考引用变量所属的类,如果没有类中没有调用的方法,编译失败。 运行时期:参考引用变量所指的对象所属的类,并运行对象所属类中的成员方法。 简而言之:编译看左边,运行看右边。 15instanceof关键字 A: 作用 可以通过instanceof关键字来判断某个对象是否属于某种数据类型。如学生的对象属于学生类,学生的对象也属于人类 格式: boolean b = 对象 instanceof 数据类型; * 举例: Person p1 = new Student(); // 前提条件,学生类已经继承了人类 boolean flag = p1 instanceof Student; //flag结果为true boolean flag2 = p2 instanceof Teacher; //flag结果为false 16多态-向上转型 A: 多态的转型分为向上转型与向下转型两种: B: 向上转型:当有子类对象赋值给一个父类引用时,便是向上转型,多态本身就是向上转型的过程。 使用格式: 父类类型 变量名 = new 子类类型(); 如:Person p = new Student(); 17多态-向下转型 A: 向下转型:一个已经向上转型的子类对象可以使用强制类型转换的格式,将父类引用转为子类引用,这个过程是向下转型。如果是直接创建父类对象,是无法向下转型的! 使用格式: 子类类型 变量名 = (子类类型) 父类类型的变量; 如:Student stu = (Student) p; //变量p 实际上指向Student对象 18多态的好处和弊端 A: 多态的好处和弊端 当父类的引用指向子类对象时,就发生了向上转型,即把子类类型对象转成了父类类型。 向上转型的好处是隐藏了子类类型,提高了代码的扩展性。 但向上转型也有弊端,只能使用父类共性的内容,而无法使用子类特有功能,功能有限制。 B: 看如下代码 //描述动物类,并抽取共性eat方法 abstract class Animal { abstract void eat(); } // 描述狗类,继承动物类,重写eat方法,增加lookHome方法 class Dog extends Animal { void eat() { System.out.println("啃骨头"); } void lookHome() { System.out.println("看家"); } } // 描述猫类,继承动物类,重写eat方法,增加catchMouse方法 class Cat extends Animal { void eat() { System.out.println("吃鱼"); } void catchMouse() { System.out.println("抓老鼠"); } } public class Test { public static void main(String[] args) { Animal a = new Dog(); //多态形式,创建一个狗对象 a.eat(); // 调用对象中的方法,会执行狗类中的eat方法 // a.lookHome();//使用Dog类特有的方法,需要向下转型,不能直接使用 // 为了使用狗类的lookHome方法,需要向下转型 // 向下转型过程中,可能会发生类型转换的错误,即ClassCastException异常 // 那么,在转之前需要做健壮性判断 if( !a instanceof Dog){ // 判断当前对象是否是Dog类型 System.out.println("类型不匹配,不能转换"); return; } Dog d = (Dog) a; //向下转型 d.lookHome();//调用狗类的lookHome方法 } } C 多态总结: 什么时候使用向上转型: 当不需要面对子类类型时,通过提高扩展性,或者使用父类的功能就能完成相应的操作,这时就可以使用向上转型。 如:Animal a = new Dog(); a.eat(); 什么时候使用向下转型 当要使用子类特有功能时,就需要使用向下转型。 如:Dog d = (Dog) a; //向下转型 d.lookHome();//调用狗类的lookHome方法 向下转型的好处:可以使用子类特有功能。 弊端是:需要面对具体的子类对象;在向下转型时容易发生ClassCastException类型转换异常。在转换之前必须做类型判断。 如:if( !a instanceof Dog){…}