Description
Input
Output
Sample Input
Sample Output
HINT
蛋疼的推公式题……依题意1/x+1/y=1/z,令y=z+d,然后
1/x+1/(z+d)=1/z
(x+z+d)/(xz+xd)=1/z
xz+z^2+dz=xz+xd
z^2+dz=xd
x=z^2/d+z
显然x是正整数主要取决于d能整除z^2
每一个d都对应一个唯一的x,所以答案就是z^2的约数个数
即(n!)^2的约数个数
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> #include<queue> #include<deque> #include<set> #include<map> #include<ctime> #define LL long long #define inf 0x7ffffff #define pa pair<int,int> #define mod 1000000007 #define mx 1000000 using namespace std; inline LL read() { LL x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } inline void write(LL a) { if (a<0){printf("-");a=-a;} if (a>=10)write(a/10); putchar(a%10+'0'); } inline void writeln(LL a){write(a);printf("\n");} bool prime[mx+10]; LL rep[mx+10]; int n; LL ans=1; inline void shai() { memset(prime,1,sizeof(prime)); prime[1]=0; for (int i=2;i<=n;i++) if (prime[i]) { LL res=i; while ((LL)n/res>0) { rep[i]+=(LL)n/res; res*=i; } for (int j=2*i;j<=n;j+=i) prime[j]=0; } } int main() { n=read();shai(); if (n==1) { printf("1\n"); return 0; } for (int i=1;i<=n;i++) if (prime[i]) { ans=ans*(2*rep[i]+1)%mod; } printf("%lld\n",ans); }