Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
//利用dp来解决,更好的办法是从后向前计算,这样就能够使用一维数组空间的来解决,符合题目的意思 //那么。动态转移方程为。dp[j] = triangle[i][j] + min(dp[j],dp[j+1]) class Solution { public: int minimumTotal(std::vector<std::vector<int> > &triangle) { int n = triangle.size(); if(n < 1) return 0; std::vector<int> dp(triangle[n-1]); for(int i = n - 2; i >= 0; i--) { for(int j = 0; j < triangle[i].size(); j++) { dp[j] = triangle[i][j] + std::min(dp[j],dp[j+1]); } } return dp[0]; } };