高并发系统下, 有三把利器 缓存 降级 限流.

  • 缓存: 将常用数据缓存起来, 减少数据库或者磁盘IO
  • 降级: 保护核心系统, 降低非核心业务请求响应
  • 限流: 在某一个时间窗口内对请求进行限速, 保护系统

 本文主要介绍限流, 常见限流算法中又分为计数器算法, 漏桶算法, 令牌桶算法.

计数器算法

比较简单, 直接用一个map + counter即可实现. 请求来了, 以IP为key,

查询下之前响应次数, 如果调用次数超出MAX_COUT, 返回失败, 属于简单粗暴型选手.

漏桶算法

请求全部进入漏桶, 漏桶恒定速率输出反馈. 这样可以保证数据传输平滑,

但是无法预防突发大量请求, 一秒来了100个请求, 都要阻塞排队, 从小水管输出数据.

 Java 对IP请求进行限流._限流

令牌桶算法

令牌桶是以固定速度往桶里存令牌, 例如一秒存1000个令牌, 业务请求来了, 直接从桶里获取令牌响应输出.

跟漏桶的差异在于, 他可以预存令牌, 如果一秒钟来了100个请求, 桶里有100个令牌,

那么可以立刻响应给客户端, 而不是排队输出.

 Java 对IP请求进行限流._ratelimit_02

令牌桶的实现

guava中提供了令牌桶的一个封装实现RateLimiter, 可以直接调用, 省的我们自己包装ConcurrentHashMap + Timer.

我们预设的场景是服务器端提供一个API供不同客户端查询, 要限流每个IP每秒只能调用两次该API.

首先要定义一个服务器端的缓存, 定期清理即可, 缓存 IP : 令牌桶

Java 对IP请求进行限流._客户端_03
 1     // 根据IP分不同的令牌桶, 每天自动清理缓存
 2     private static LoadingCache<String, RateLimiter> caches = CacheBuilder.newBuilder()
 3             .maximumSize(1000)
 4             .expireAfterWrite(1, TimeUnit.DAYS)
 5             .build(new CacheLoader<String, RateLimiter>() {
 6                 @Override
 7                 public RateLimiter load(String key) throws Exception {
 8                     // 新的IP初始化 (限流每秒两个令牌响应)
 9                     return RateLimiter.create(2);
10                 }
11             });
Java 对IP请求进行限流._客户端_03

然后在业务代码中进行限流调用

Java 对IP请求进行限流._客户端_03
 1     private static void login(int i) throws ExecutionException {
 2         // 模拟IP的key
 3         String ip = String.valueOf(i).charAt(0) + "";
 4         RateLimiter limiter = caches.get(ip);
 5 
 6         if (limiter.tryAcquire()) {
 7             System.out.println(i + " success " + new SimpleDateFormat("HH:mm:ss.sss").format(new Date()));
 8         } else {
 9             System.out.println(i + " failed " + new SimpleDateFormat("HH:mm:ss.sss").format(new Date()));
10         }
11     }
Java 对IP请求进行限流._客户端_03

模拟客户端调用

1         for (int i = 0; i < 1000; i++) {
2             // 模拟实际业务请求
3             Thread.sleep(100);
4             login(i);
5         }

完整代码

Java 对IP请求进行限流._服务器端_07View Code

 

 
 
 
 

高并发系统下, 有三把利器 缓存 降级 限流.

  • 缓存: 将常用数据缓存起来, 减少数据库或者磁盘IO
  • 降级: 保护核心系统, 降低非核心业务请求响应
  • 限流: 在某一个时间窗口内对请求进行限速, 保护系统

 本文主要介绍限流, 常见限流算法中又分为计数器算法, 漏桶算法, 令牌桶算法.

计数器算法

比较简单, 直接用一个map + counter即可实现. 请求来了, 以IP为key,

查询下之前响应次数, 如果调用次数超出MAX_COUT, 返回失败, 属于简单粗暴型选手.

漏桶算法

请求全部进入漏桶, 漏桶恒定速率输出反馈. 这样可以保证数据传输平滑,

但是无法预防突发大量请求, 一秒来了100个请求, 都要阻塞排队, 从小水管输出数据.

 Java 对IP请求进行限流._限流

令牌桶算法

令牌桶是以固定速度往桶里存令牌, 例如一秒存1000个令牌, 业务请求来了, 直接从桶里获取令牌响应输出.

跟漏桶的差异在于, 他可以预存令牌, 如果一秒钟来了100个请求, 桶里有100个令牌,

那么可以立刻响应给客户端, 而不是排队输出.

 Java 对IP请求进行限流._ratelimit_02

令牌桶的实现

guava中提供了令牌桶的一个封装实现RateLimiter, 可以直接调用, 省的我们自己包装ConcurrentHashMap + Timer.

我们预设的场景是服务器端提供一个API供不同客户端查询, 要限流每个IP每秒只能调用两次该API.

首先要定义一个服务器端的缓存, 定期清理即可, 缓存 IP : 令牌桶

Java 对IP请求进行限流._客户端_03
 1     // 根据IP分不同的令牌桶, 每天自动清理缓存
 2     private static LoadingCache<String, RateLimiter> caches = CacheBuilder.newBuilder()
 3             .maximumSize(1000)
 4             .expireAfterWrite(1, TimeUnit.DAYS)
 5             .build(new CacheLoader<String, RateLimiter>() {
 6                 @Override
 7                 public RateLimiter load(String key) throws Exception {
 8                     // 新的IP初始化 (限流每秒两个令牌响应)
 9                     return RateLimiter.create(2);
10                 }
11             });
Java 对IP请求进行限流._客户端_03

然后在业务代码中进行限流调用

Java 对IP请求进行限流._客户端_03
 1     private static void login(int i) throws ExecutionException {
 2         // 模拟IP的key
 3         String ip = String.valueOf(i).charAt(0) + "";
 4         RateLimiter limiter = caches.get(ip);
 5 
 6         if (limiter.tryAcquire()) {
 7             System.out.println(i + " success " + new SimpleDateFormat("HH:mm:ss.sss").format(new Date()));
 8         } else {
 9             System.out.println(i + " failed " + new SimpleDateFormat("HH:mm:ss.sss").format(new Date()));
10         }
11     }
Java 对IP请求进行限流._客户端_03

模拟客户端调用

1         for (int i = 0; i < 1000; i++) {
2             // 模拟实际业务请求
3             Thread.sleep(100);
4             login(i);
5         }

完整代码

Java 对IP请求进行限流._服务器端_07View Code