1 // Copyright 2000 softSurfer, 2012 Dan Sunday
2 // This code may be freely used and modified for any purpose
3 // providing that this copyright notice is included with it.
4 // SoftSurfer makes no warranty for this code, and cannot be held
5 // liable for any real or imagined damage resulting from its use.
6 // Users of this code must verify correctness for their application.
7 // a Point is defined by its coordinates {int x, y;}
8 //===================================================================
9 // isLeft(): tests if a point is Left|On|Right of an infinite line.
10 判断P2点在直线上(P0,P1)
11 // Input: three points P0, P1, and P2
12 // Return: >0 for P2 left of the line through P0 and P1
13 // =0 for P2 on the line
14 // <0 for P2 right of the line
15 // See: Algorithm 1 "Area of Triangles and Polygons"
16 inline int isLeft( Point P0, Point P1, Point P2 )
17 {
18 return ( (P1.x - P0.x) * (P2.y - P0.y)
19 - (P2.x - P0.x) * (P1.y - P0.y) );
20 }
21 //===================================================================
22 射线法判断点在多边形内
23 // cn_PnPoly(): crossing number test for a point in a polygon
24 // Input: P = a point,
25 // V[] = vertex points of a polygon V[n+1] with V[n]=V[0]
26 // Return: 0 = outside, 1 = inside
27 // This code is patterned after [Franklin, 2000]
28 int cn_PnPoly( Point P, Point* V, int n )
29 {
30 int cn = 0; // the crossing number counter
31
32 // loop through all edges of the polygon
33 for (int i=0; i<n; i++) { // edge from V[i] to V[i+1]
34 if (((V[i].y <= P.y) && (V[i+1].y > P.y)) // an upward crossing
35 || ((V[i].y > P.y) && (V[i+1].y <= P.y))) { // a downward crossing
36 // compute the actual edge-ray intersect x-coordinate
37 float vt = (float)(P.y - V[i].y) / (V[i+1].y - V[i].y);
38 if (P.x < V[i].x + vt * (V[i+1].x - V[i].x)) // P.x < intersect
39 ++cn; // a valid crossing of y=P.y right of P.x
40 }
41 }
42 return (cn&1); // 0 if even (out), and 1 if odd (in)
43
44 }
45 //===================================================================
46
47 // wn_PnPoly(): winding number test for a point in a polygon
48 // Input: P = a point,
49 // V[] = vertex points of a polygon V[n+1] with V[n]=V[0]
50 // Return: wn = the winding number (=0 only when P is outside)
51 int wn_PnPoly( Point P, Point* V, int n )
52 {
53 int wn = 0; // the winding number counter
54
55 // loop through all edges of the polygon
56 for (int i=0; i<n; i++) { // edge from V[i] to V[i+1]
57 if (V[i].y <= P.y) { // start y <= P.y
58 if (V[i+1].y > P.y) // an upward crossing
59 if (isLeft( V[i], V[i+1], P) > 0) // P left of edge
60 ++wn; // have a valid up intersect
61 }
62 else { // start y > P.y (no test needed)
63 if (V[i+1].y <= P.y) // a downward crossing
64 if (isLeft( V[i], V[i+1], P) < 0) // P right of edge
65 --wn; // have a valid down intersect
66 }
67 }
68 return wn;
69 }
70 //===================================================================