A - Little Artem and Presents (div2)
1 2 1 2这样加就可以了
#include <bits/stdc++.h> typedef long long ll; const int N = 1e5 + 5; int main() { int n; scanf ("%d", &n); int ans = n / 3 * 2; if (n % 3) { ans++; } printf ("%d\n", ans); return 0; }
B - Little Artem and Grasshopper (div2)
水题,暴力模拟一下
#include <bits/stdc++.h> typedef long long ll; const int N = 1e5 + 5; char str[N]; int a[N]; int main() { int n; scanf ("%d", &n); scanf ("%s", str); for (int i=0; i<n; ++i) { scanf ("%d", a+i); } int now = 0; while (true) { if (now < 0 || now >= n) { break; } if (a[now] == -1) { puts ("INFINITE"); return 0; } if (str[now] == '>') { int pre = now; now = now + a[now]; a[pre] = -1; } else { int pre = now; now = now - a[now]; a[pre] = -1; } } puts ("FINITE"); return 0; }
构造 C - Little Artem and Matrix (div2)
倒过来做,循环也反着来
#include <bits/stdc++.h> typedef long long ll; const int N = 1e2 + 5; const int Q = 1e4 + 5; int a[N][N]; int t[Q], row[Q], col[Q], x[Q]; int main() { int n, m, q; scanf ("%d%d%d", &n, &m, &q); for (int i=1; i<=q; ++i) { scanf ("%d", t+i); if (t[i] == 1) { scanf ("%d", row+i); } if (t[i] == 2) { scanf ("%d", col+i); } if (t[i] == 3) { scanf ("%d%d%d", row+i, col+i, x+i); } //printf ("%d %d %d %d\n", t[i], row[i], col[i], x[i]); } for (int i=q; i>=1; --i) { if (t[i] == 1) { int last = a[row[i]][m]; for (int j=m; j>=2; --j) { a[row[i]][j] = a[row[i]][j-1]; } a[row[i]][1] = last; } if (t[i] == 2) { int last = a[n][col[i]]; for (int j=n; j>=2; --j) { a[j][col[i]] = a[j-1][col[i]]; } a[1][col[i]] = last; } if (t[i] == 3) { a[row[i]][col[i]] = x[i]; } } for (int i=1; i<=n; ++i) { for (int j=1; j<=m; ++j) { printf ("%d%c", a[i][j], j == m ? '\n' : ' '); } } return 0; }
数学 D - Little Artem and Dance (div2)
题意:男生与女生围成圈跳舞,女生的位置不变,男生可以移动x个女生或者相邻的男生奇偶互换,问最后男生的排列
分析:问题的关键点在于奇数男生的圈顺序不变,偶数也不变,只是起点的位置改变,所以只要对两个起点操作就行了。
#include <bits/stdc++.h> typedef long long ll; const int N = 1e6 + 5; int ans[N]; int main() { int p0 = 0, p1 = 1; int n, q; scanf ("%d%d", &n, &q); for (int i=0; i<q; ++i) { int type; scanf ("%d", &type); if (type == 1) { int x; scanf ("%d", &x); p0 = (p0 + x + n) % n; p1 = (p1 + x + n) % n; } else { p0 = p0 ^ 1; p1 = p1 ^ 1; } } for (int i=0; i<n; i+=2) { ans[(p0+i)%n] = i + 1; } for (int i=1; i<n; i+=2) { ans[(p1+i-1)%n] = i + 1; } for (int i=0; i<n; ++i) { printf ("%d%c", ans[i], i == n-1 ? '\n' : ' '); } return 0; }
数学+前(后)缀 C - Little Artem and Random Variable (div1)
题意:已知p(max(a,b)=k) 和 p(min(a,b)=k)的概率,求p(a=k) 和 p(b=k)
分析:
P(a = k) = P(a <= k) — P(a <= k-1) P(max(a, b) <= k) = P(a <= k) * P(b <= k)
P(min(a, b) >= k) = P(a >= k) * P(b >= k) = (1 — P(a <= k-1)) *(1 — P(b <= k-1))
即
解方程的和,从而求得和
#include <bits/stdc++.h> const int N = 1e5 + 5; double p[N], q[N], a[N], b[N]; int main() { int n; scanf ("%d", &n); for (int i=1; i<=n; ++i) { scanf ("%lf", p+i); p[i] += p[i-1]; } for (int i=1; i<=n; ++i) { scanf ("%lf", q+i); } for (int i=n; i>=1; --i) { q[i] += q[i+1]; } for (int i=1; i<=n; ++i) { double A = p[i], B = q[i+1]; double C = B - A - 1; double delta = sqrt (std::max (C*C - 4 * A, 0.0)); a[i] = (-C+delta) / 2; b[i] = (-C-delta) / 2; } for (int i=1; i<=n; ++i) { printf ("%.10f%c", a[i] - a[i-1], i == n ? '\n' : ' '); } for (int i=1; i<=n; ++i) { printf ("%.10f%c", b[i] - b[i-1], i == n ? '\n' : ' '); } return 0; }