前言

Linux 是一个多任务操作系统,它支持远大于 CPU 数量的任务同时运行。

  当然,这些任务实际上并不是真的在同时运行,而是因为系统在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。而在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(Program Counter,PC)。CPU 寄存器,是 CPU 内置的容量小、但速度极快的内存。而程序计数器,则是用来存储 CPU 正在执行的指令位置、或者即将执行的下一条指令位置。它们都是 CPU 在运行任何任务前,必须的依赖环境,因此也被叫做 CPU 上下文

  知道了什么是 CPU 上下文,我想你也很容易理解 CPU 上下文切换。CPU 上下文切换,就是先把前一个任务的 CPU 上下文(也就是 CPU 寄存器和程序计数器)保存起来,然后加载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置,运行新任务。而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。

根据任务的不同,CPU 的上下文切换就可以分为几个不同的场景:

  • 进程上下文切换
  • 线程上下文切换
  • 中断上下文切换

进程上下文切换

Linux 按照特权等级,把进程的运行空间分为内核空间和用户空间,分别对应着下图中, CPU 特权等级的 Ring 0 和 Ring 3。

内核空间(Ring 0)具有最高权限,可以直接访问所有资源;

用户空间(Ring 3)只能访问受限资源,不能直接访问内存等硬件设备,必须通过系统调用陷入到内核中,才能访问这些特权资源。

换个角度看,也就是说,进程既可以在用户空间运行,又可以在内核空间中运行。进程在用户空间运行时,被称为进程的用户态,而陷入内核空间的时候,被称为进程的内核态。

从用户态到内核态的转变,需要通过系统调用来完成。比如,当我们查看文件内容时,就需要多次系统调用来完成:首先调用 open() 打开文件,然后调用 read() 读取文件内容,并调用 write() 将内容写到标准输出,最后再调用 close() 关闭文件。

系统调用的过程

CPU 寄存器里原来用户态的指令位置,需要先保存起来。接着,为了执行内核态代码,CPU 寄存器需要更新为内核态指令的新位置。

最后才是跳转到内核态运行内核任务。而系统调用结束后,CPU 寄存器需要恢复原来保存的用户态,然后再切换回到用户空间,继续运行进程。

所以,一次系统调用的过程,其实是发生了两次 CPU 上下文切换,系统调用过程不会涉及到虚拟内存等进程用户态的资源,一直在同一个进程中运行,也不会切换进程。所以系统调用通常称为特权模式切换,而不是上下文切换。

进程上下文切换

 

首先,你需要知道,进程是由内核来管理和调度的,进程的切换只能发生在内核态。所以,进程的上下文不仅包括了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的状态。因此,进程的上下文切换就比系统调用时多了一步:在保存当前进程的内核状态和 CPU 寄存器之前,需要先把该进程的虚拟内存、栈等保存下来;而加载了下一进程的内核态后,还需要刷新进程的虚拟内存和用户栈

进程上下文切换的过程:

CPU上下文切换_用户态

 

 注意:每次上下文切换都需要几十纳秒到数微秒的 CPU 时间。这个时间还是相当可观的,特别是在进程上下文切换次数较多的情况下,很容易导致 CPU 将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。

进程切换场景

  • CPU被划分为一段段时间片,轮流分给各个进程。进程时间片耗尽,被系统挂起,从就绪队列中拿一个新的进程运行
  • 进程运行资源不满足时,等待资源满足才运行,这时也会被挂起,系统调度其他进程运行
  • 进程调用sleep休眠函数主动挂起
  • 更高优先级的进程运行,当前进程被挂起
  • 发生硬件中断时,CPU上进程被挂起,转而执行内核中断服务程序

 

线程上下文切换

线程与进程最大的区别在于,线程是调度的基本单位,而进程则是资源拥有的基本单位。

说白了,所谓内核中的任务调度,实际上的调度对象是线程;

而进程只是给线程提供了虚拟内存、全局变量等资源。所以,对于线程和进程,我们可以这么理解:

  • 当进程只有一个线程时,可以认为进程就等于线程。
  • 当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源在上下文切换时是不需要修改的。
  • 另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。

这么一来,线程的上下文切换其实就可以分为两种情况:

第一种, 前后两个线程属于不同进程。此时,因为资源不共享,所以切换过程就跟进程上下文切换是一样。

第二种,前后两个线程属于同一个进程。此时,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据。

到这里你应该也发现了,虽然同为上下文切换,但同进程内的线程切换,要比多进程间的切换消耗更少的资源,而这,也正是多线程代替多进程的一个优势。

 

中断上下文切换

为了快速响应硬件的事件,中断处理会打断进程的正常调度和执行,转而调用中断处理程序,响应设备事件。而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。

跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户态资源。中断上下文,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等。

对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生。同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。

另外,跟进程上下文切换一样,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能。所以,当你发现中断次数过多时,就需要注意去排查它是否会给你的系统带来严重的性能问题。