Permutation p is an ordered set of integers p1, p2, ..., pn, consisting of n distinct positive integers not larger than n. We'll denote as nthe length of permutation p1, p2, ..., pn.
Your task is to find such permutation p of length n, that the group of numbers |p1 - p2|, |p2 - p3|, ..., |pn - 1 - pn| has exactly k distinct elements.
The single line of the input contains two space-separated positive integers n, k (1 ≤ k < n ≤ 105).
Print n integers forming the permutation. If there are multiple answers, print any of them.
3 2
1 3 2
3 1
1 2 3
5 2
1 3 2 4 5
By |x| we denote the absolute value of number x.
用n个数1~n,每一个数仅仅能用一次。组成差值的绝对值有k个数。为1~k。
输出任一个方案。
构造题,我是这样构造的,取前k+1个数。第一个数取1,先+k。后一个数-(k-1),在后一个数+k-2.......这样从两头往
中间靠拢。既取完了k+1个数。又构造了1~k的差值绝对值,至于k+1后的嘛,每次+1即可了。
代码:
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> using namespace std; const int maxn=100000+1000; int ans[maxn]; int main() { int n,k; ans[1]=1; scanf("%d%d",&n,&k); if(k==1) { for(int i=1;i<=n;i++) ans[i]=i; } else { for(int i=2;i<=k+1;i++) { if(i%2) ans[i]=ans[i-1]-(k-i+2); else ans[i]=ans[i-1]+(k-i+2); } int cur=1; for(int i=k+2;i<=n;i++) { ans[i]=k+1+cur; cur++; } } for(int i=1;i<n;i++) printf("%d ",ans[i]); printf("%d\n",ans[n]); return 0; }