假设农场中成熟的母牛每年只会生 1 头小母牛,并且永远不会死。第一年农场中有一只成熟的母牛,从第二年开始,母牛开始生小母牛。每只小母牛 3 年之后成熟又可以生小母牛。给定整数 n,求出 n 年后牛的数量。
f(1) = 1
f(2) = 2
f(3) = 3
f(n) = f(n - 1) + f(n - 3) (n > 3)
f(n) = (f(3), f(2), f(1)) (x ^ (n - 3))
所以有,
(f(4), f(3), f(2)) = (f(3), f(2), f(1)) (x ^ 1)
(f(5), f(4), f(3)) = (f(3), f(2), f(1)) (x ^ 2)
(f(6), f(5), f(4)) = (f(3), f(2), f(1)) (x ^ 3)
得矩阵
{1, 1, 0},
{0, 0, 1}.
{1, 0, 0}
import java.util.Scanner;
public class Main {
private static final int MOD = 1000000007;
private static long[][] multiply(long[][] a, long[][] b) {
long[][] result = new long[a.length][b[0].length];
for (int i = 0; i < a.length; ++i) {
for (int j = 0; j < b[0].length; ++j) {
for (int k = 0; k < a[0].length; ++k) {
result[i][j] = (result[i][j] + a[i][k] * b[k][j]) % MOD;
}
}
}
return result;
}
private static long solve(long n) {
if (n <= 3) {
return n;
}
n -= 3;
long[][] result = {
{3, 2, 1}
};
long[][] base = {
{1, 1, 0},
{0, 0, 1},
{1, 0, 0}
};
while (n > 0) {
if ((n & 1) != 0) {
result = multiply(result, base);
}
n >>= 1;
base = multiply(base, base);
}
return result[0][0];
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
while (in.hasNext()) {
long n = in.nextLong();
System.out.println(solve(n));
}
}
}