一、理解Vue批量异步更新策略
异步更新队列:Vue高效的秘诀是批量、异步的更新策略
首先来了解下Event Loop事件循环机制
事件循环Event Loop:浏览器为了协调事件处理、脚本执行、网络请求和渲染等任务而制定的工作机制
看源码执行过程
在Object.defineReactive()中的set方法,set方法中通过Dep大管家通知更新(dep.notify())
dep.notify()中执行的代码,其中的subs就是dep的[watcher],最后执行subs[i].update(),进入到改update中
notify () {
// stabilize the subscriber list first
const subs = this.subs.slice()
if (process.env.NODE_ENV !== 'production' && !config.async) {
// subs aren't sorted in scheduler if not running async
// we need to sort them now to make sure they fire in correct
// order
subs.sort((a, b) => a.id - b.id)
}
// 遍历关联所有watcher
for (let i = 0, l = subs.length; i < l; i++) {
subs[i].update()
}
}
update方法是将watcher加入到队列中
update () {
/* istanbul ignore else */
if (this.lazy) {
this.dirty = true
} else if (this.sync) {
this.run()
} else {
// watcher入队
queueWatcher(this)
}
}
export function queueWatcher (watcher: Watcher) { const id = watcher.id // 去重:单个watcher只入队一次 if (has[id] == null) { has[id] = true if (!flushing) { queue.push(watcher) } else { // if already flushing, splice the watcher based on its id // if already past its id, it will be run next immediately. let i = queue.length - 1 while (i > index && queue[i].id > watcher.id) { i-- } queue.splice(i + 1, 0, watcher) } // queue the flush if (!waiting) { waiting = true if (process.env.NODE_ENV !== 'production' && !config.async) { flushSchedulerQueue() return }
nextTick的作用 // 异步方式将flushSchedulerQueue放入队列 nextTick(flushSchedulerQueue) } } }
接下来看nextTick方法
// 此方法就是我们平时使用的nextTick方法
export function nextTick (cb?: Function, ctx?: Object) {
let _resolve
callbacks.push(() => {
if (cb) {
try {
cb.call(ctx)
} catch (e) {
handleError(e, ctx, 'nextTick')
}
} else if (_resolve) {
_resolve(ctx)
}
})
if (!pending) {
pending = true
// 异步执行callbacks中的任务
timerFunc() //看浏览器支持程度,promise.resolve().then(flushCallbacks) > MutationObserver 最后不得已浏览器不支持才将watcher派发给宏任务队列 => setTimeout(flushCallbacks,0)
}
// $flow-disable-line
if (!cb && typeof Promise !== 'undefined') {
return new Promise(resolve => {
_resolve = resolve
})
}
}
等到浏览器执行微任务的时候,会执行flushSchedulerQueue,冲洗所有的队列并且run watchers
function flushSchedulerQueue () { currentFlushTimestamp = getNow() flushing = true let watcher, id // Sort queue before flush. // This ensures that: // 1. Components are updated from parent to child. (because parent is always // created before the child) // 2. A component's user watchers are run before its render watcher (because // user watchers are created before the render watcher) // 3. If a component is destroyed during a parent component's watcher run, // its watchers can be skipped. queue.sort((a, b) => a.id - b.id) // do not cache length because more watchers might be pushed // as we run existing watchers // 按id顺序执行watcher更新 for (index = 0; index < queue.length; index++) { watcher = queue[index] if (watcher.before) { watcher.before() } id = watcher.id has[id] = null // 真正的更新函数 watcher.run() // in dev build, check and stop circular updates. if (process.env.NODE_ENV !== 'production' && has[id] != null) { circular[id] = (circular[id] || 0) + 1 if (circular[id] > MAX_UPDATE_COUNT) { warn( 'You may have an infinite update loop ' + ( watcher.user ? `in watcher with expression "${watcher.expression}"` : `in a component render function.` ), watcher.vm ) break } } } }
进入到watcher.run()方法 run方法会调用watcher的get方法,get方法会this.getter方法,this.getter指向updateComponent()方法
updateComponent = () => { vm._update(vm._render(), hydrating) }
updateComponent()先执行vm._render()得到虚拟dom,再执行vm._update()将虚拟dom转化为真实dom
二、掌握虚拟DOM和diff算法
细看vm.update()方法,初始化的时候拿真实dom走第一个方法,更新的时候有虚拟dom了就走第二个方法
if (!prevVnode) { // initial render //初始化渲染,vm.$el是真实dom vm.$el = vm.__patch__(vm.$el, vnode, hydrating, false /* removeOnly */) } else { // updates(有虚拟dom之后走更新函数) vm.$el = vm.__patch__(prevVnode, vnode) }
接下来来看__patch__具体做了什么
// 更新时调用的__patch__就是这个 return function patch (oldVnode, vnode, hydrating, removeOnly) { // 新的不存在:删除 if (isUndef(vnode)) { if (isDef(oldVnode)) invokeDestroyHook(oldVnode) return } let isInitialPatch = false const insertedVnodeQueue = [] // 老的不存在:创建 if (isUndef(oldVnode)) { // empty mount (likely as component), create new root element isInitialPatch = true createElm(vnode, insertedVnodeQueue) } else { const isRealElement = isDef(oldVnode.nodeType) if (!isRealElement && sameVnode(oldVnode, vnode)) { // patch existing root node // diff发生的地方(更新的时候才会触发) patchVnode(oldVnode, vnode, insertedVnodeQueue, null, null, removeOnly) } else { // 初始化走这里
isRealElement是否是真实的节点 if (isRealElement) { // mounting to a real element // check if this is server-rendered content and if we can perform // a successful hydration. if (oldVnode.nodeType === 1 && oldVnode.hasAttribute(SSR_ATTR)) { oldVnode.removeAttribute(SSR_ATTR) hydrating = true } if (isTrue(hydrating)) { if (hydrate(oldVnode, vnode, insertedVnodeQueue)) { invokeInsertHook(vnode, insertedVnodeQueue, true) return oldVnode } else if (process.env.NODE_ENV !== 'production') { warn( 'The client-side rendered virtual DOM tree is not matching ' + 'server-rendered content. This is likely caused by incorrect ' + 'HTML markup, for example nesting block-level elements inside ' + '<p>, or missing <tbody>. Bailing hydration and performing ' + 'full client-side render.' ) } } // either not server-rendered, or hydration failed. // create an empty node and replace it
//oldVnode是虚拟节点vnode,表明此时已经将真实节点转化为虚拟节点 oldVnode = emptyNodeAt(oldVnode) } // replacing existing element const oldElm = oldVnode.elm const parentElm = nodeOps.parentNode(oldElm) // create new node createElm( vnode, insertedVnodeQueue, // extremely rare edge case: do not insert if old element is in a // leaving transition. Only happens when combining transition + // keep-alive + HOCs. (#4590) oldElm._leaveCb ? null : parentElm, nodeOps.nextSibling(oldElm) ) // update parent placeholder node element, recursively if (isDef(vnode.parent)) { let ancestor = vnode.parent const patchable = isPatchable(vnode) while (ancestor) { for (let i = 0; i < cbs.destroy.length; ++i) { cbs.destroy[i](ancestor) } ancestor.elm = vnode.elm if (patchable) { for (let i = 0; i < cbs.create.length; ++i) { cbs.create[i](emptyNode, ancestor) } // #6513 // invoke insert hooks that may have been merged by create hooks. // e.g. for directives that uses the "inserted" hook. const insert = ancestor.data.hook.insert if (insert.merged) { // start at index 1 to avoid re-invoking component mounted hook for (let i = 1; i < insert.fns.length; i++) { insert.fns[i]() } } } else { registerRef(ancestor) } ancestor = ancestor.parent } } // destroy old node if (isDef(parentElm)) { removeVnodes([oldVnode], 0, 0) } else if (isDef(oldVnode.tag)) { invokeDestroyHook(oldVnode) } } } invokeInsertHook(vnode, insertedVnodeQueue, isInitialPatch) return vnode.elm } }
patch的实现
首先进行树级的比较,可能有三种情况:增删改
1、new vnode不存在就删
2、old vnode不存在就删
3、都存在就都执行diff执行更新
接下来具体看patch里运用到的diff算法,主要是再patchvnode()(diff发生的地方)去实现的
遵循下面规律:同层比较,深度优先 例如下面的图片
patchVnode 比较两个虚拟dom
// 1.获取两个比较节点孩子
const oldCh = oldVnode.children
const ch = vnode.children
// 2.属性更新
if (isDef(data) && isPatchable(vnode)) {
for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode)
if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode)
}
// 3.没有文本
if (isUndef(vnode.text)) {
// 双方均有孩子:比较子节点
if (isDef(oldCh) && isDef(ch)) {
if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly)
} else if (isDef(ch)) { //新的有孩子,老的没有
if (process.env.NODE_ENV !== 'production') {
checkDuplicateKeys(ch)
}
// 新增
if (isDef(oldVnode.text)) nodeOps.setTextContent(elm, '')
addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue)
} else if (isDef(oldCh)) {
// 删除
removeVnodes(oldCh, 0, oldCh.length - 1)
} else if (isDef(oldVnode.text)) {
// 文本清空
nodeOps.setTextContent(elm, '')
}
} else if (oldVnode.text !== vnode.text) {
// 文本更新
nodeOps.setTextContent(elm, vnode.text)
}
// 钩子
if (isDef(data)) {
if (isDef(i = data.hook) && isDef(i = i.postpatch)) i(oldVnode, vnode)
}
updateChildren 对比新旧两个vnode的children
// 比较两组孩子节点 function updateChildren (parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) { // 设置首尾4个游标以及相对应的节点 let oldStartIdx = 0 let newStartIdx = 0 let oldEndIdx = oldCh.length - 1 let oldStartVnode = oldCh[0] let oldEndVnode = oldCh[oldEndIdx] let newEndIdx = newCh.length - 1 let newStartVnode = newCh[0] let newEndVnode = newCh[newEndIdx] // 后面进行查找时所需的变量 let oldKeyToIdx, idxInOld, vnodeToMove, refElm // removeOnly is a special flag used only by <transition-group> // to ensure removed elements stay in correct relative positions // during leaving transitions const canMove = !removeOnly if (process.env.NODE_ENV !== 'production') { checkDuplicateKeys(newCh) } // 开始循环:结束条件开始游标不能超过结束游标 while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) { // 前两种情况是游标调整 if (isUndef(oldStartVnode)) { oldStartVnode = oldCh[++oldStartIdx] // Vnode has been moved left } else if (isUndef(oldEndVnode)) { oldEndVnode = oldCh[--oldEndIdx] } else if (sameVnode(oldStartVnode, newStartVnode)) { // 两个开头相同 patchVnode(oldStartVnode, newStartVnode, insertedVnodeQueue, newCh, newStartIdx) // 游标向后移动 oldStartVnode = oldCh[++oldStartIdx] newStartVnode = newCh[++newStartIdx] } else if (sameVnode(oldEndVnode, newEndVnode)) { // 两个结束 patchVnode(oldEndVnode, newEndVnode, insertedVnodeQueue, newCh, newEndIdx) // 游标向前移动 oldEndVnode = oldCh[--oldEndIdx] newEndVnode = newCh[--newEndIdx] } else if (sameVnode(oldStartVnode, newEndVnode)) { // Vnode moved right // 老的开始和新的结束 patchVnode(oldStartVnode, newEndVnode, insertedVnodeQueue, newCh, newEndIdx) // 移动该节点到队尾 canMove && nodeOps.insertBefore(parentElm, oldStartVnode.elm, nodeOps.nextSibling(oldEndVnode.elm)) oldStartVnode = oldCh[++oldStartIdx] newEndVnode = newCh[--newEndIdx] } else if (sameVnode(oldEndVnode, newStartVnode)) { // Vnode moved left // 老结束和新开始 patchVnode(oldEndVnode, newStartVnode, insertedVnodeQueue, newCh, newStartIdx) // 移动到队首 canMove && nodeOps.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm) oldEndVnode = oldCh[--oldEndIdx] newStartVnode = newCh[++newStartIdx] } else { // 首尾没有找到相同的,从新的开头拿出一个节点,去老的数组查找 if (isUndef(oldKeyToIdx)) oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx) idxInOld = isDef(newStartVnode.key) ? oldKeyToIdx[newStartVnode.key] : findIdxInOld(newStartVnode, oldCh, oldStartIdx, oldEndIdx) // 如果在老数组中没有找到 if (isUndef(idxInOld)) { // New element // 新增 createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm, false, newCh, newStartIdx) } else { // 否则更新 vnodeToMove = oldCh[idxInOld] if (sameVnode(vnodeToMove, newStartVnode)) { patchVnode(vnodeToMove, newStartVnode, insertedVnodeQueue, newCh, newStartIdx) oldCh[idxInOld] = undefined // 移动到队首 canMove && nodeOps.insertBefore(parentElm, vnodeToMove.elm, oldStartVnode.elm) } else { // same key but different element. treat as new element createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm, false, newCh, newStartIdx) } } newStartVnode = newCh[++newStartIdx] } } // 清理工作: // 如果老的结束了,新数组中剩下的要批量新增 if (oldStartIdx > oldEndIdx) { refElm = isUndef(newCh[newEndIdx + 1]) ? null : newCh[newEndIdx + 1].elm addVnodes(parentElm, refElm, newCh, newStartIdx, newEndIdx, insertedVnodeQueue) } else if (newStartIdx > newEndIdx) { // 如果新的结束了,老数组中剩下的要批量删除 removeVnodes(oldCh, oldStartIdx, oldEndIdx) } }
查找相同节点最重要的依赖依据:sameVnode(key是判断两个相同节点的必要条件)
function sameVnode (a, b) { return ( // key是判断两个相同节点必要条件 a.key === b.key && ( ( a.tag === b.tag && a.isComment === b.isComment && isDef(a.data) === isDef(b.data) && sameInputType(a, b) ) || ( isTrue(a.isAsyncPlaceholder) && a.asyncFactory === b.asyncFactory && isUndef(b.asyncFactory.error) ) ) ) }