官网介绍
http://spark.apache.org/docs/2.3.0/streaming-kafka-0-10-integration.html#creating-a-direct-stream
案例pom.xml依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.3.0</version>
<!-- <scope>provided</scope> -->
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>2.3.0</version>
package SpartStreamingaiqiyi
import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
object test {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder()
.appName("aiqiyi")
.master("local[*]")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.getOrCreate()
val sc = spark.sparkContext
val checkpointDir = "F:\\IdeaWorkspace\\aiqiyi\\ck"
val ssc: StreamingContext = new StreamingContext(sc, Seconds(5))
ssc.checkpoint(checkpointDir)
val topics = Array("aiqiyi")
// Create a local StreamingContext with two working thread and batch interval of 1 second.
// The master requires 2 cores to prevent a starvation scenario.
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "dip005:9092,dip006:9092,dip007:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "use_a_separate_group_id_for_each_stream",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)
)
val stream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
val resultDStream = stream.map(x=>x.value())
resultDStream.print()
ssc.start()
ssc.awaitTermination()
}
}