如何在numpy数组中选取若干列或者行?
>>> import numpy as np
>>> tmp_a = np.array([[1,1], [0.4, 4], [1., 0.9]])
>>> tmp_a
array([[ 1. , 1. ],
[ 0.4, 4. ],
[ 1. , 0.9]])
>>> tmp_a[[0,1],:] # 选第0、1行
array([[ 1. , 1. ],
[ 0.4, 4. ]])
>>> tmp_a[np.array([True, False, True]), :] # 选第0、2行
array([[ 1. , 1. ],
[ 1. , 0.9]])
>>> tmp_a[:,[0]] # 选第0列
array([[ 1. ],
[ 0.4],
[ 1. ]])
>>> tmp_a[:, np.array([True, False])] # 选第0列
array([[ 1. ],
[ 0.4],
[ 1. ]])
训练GBDT
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> gbdt = GradientBoostingClassifier()
>>> gbdt.fit(training_data, training_labels) # 训练。喝杯咖啡吧
GradientBoostingClassifier(init=None, learning_rate=0.1, loss='deviance',
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
random_state=None, subsample=1.0, verbose=0,
warm_start=False)
>>> gbdt.feature_importances_ # 据此选取重要的特征
array([ 2.08644807e-06, 0.00000000e+00, 8.93452010e-04, ...,
5.12199658e-04, 0.00000000e+00, 0.00000000e+00])
>>> gbdt.feature_importances_.shape
(19630,)
看一下GBDT的分类效果:
>>> gbdt_predict_labels = gbdt.predict(test_data)
>>> sum(gbdt_predict_labels==test_labels) # 比 多项式贝叶斯 差许多
414
新的训练集和测试集(只保留了1636个特征,原先是19630个特征):
>>> new_train_data = training_data[:, feature_importances>0]
>>> new_train_data.shape # 只保留了1636个特征
(1998, 1636)
>>> new_test_data = test_data[:, feature_importances>0]
>>> new_test_data.shape
(509, 1636)
使用多项式贝叶斯处理新数据
>>> from sklearn.naive_bayes import MultinomialNB
>>> bayes = MultinomialNB()
>>> bayes.fit(new_train_data, training_labels)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
>>> bayes_predict_labels = bayes.predict(new_test_data)
>>> sum(bayes_predict_labels == test_labels) # 之前预测正确的样本数量是454
445
使用伯努利贝叶斯处理新数据
>>> from sklearn.naive_bayes import BernoulliNB
>>> bayes2 = BernoulliNB()
>>> bayes2.fit(new_train_data, training_labels)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
>>> bayes_predict_labels = bayes2.predict(new_test_data)
>>> sum(bayes_predict_labels == test_labels) # 之前预测正确的样本数量是387
422
使用Logistic回归处理新数据
对原始特征组成的数据集:
>>> from sklearn.linear_model import LogisticRegression
>>> lr1 = LogisticRegression()
>>> lr1.fit(training_data, training_labels)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr',
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
verbose=0)
>>> lr1_predict_labels = lr1.predict(test_data)
>>> sum(lr1_predict_labels == test_labels)
446
对削减后的特征组成的数据集:
>>> lr2 = LogisticRegression()
>>> lr2.fit(new_train_data, training_labels)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr',
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
verbose=0)
>>> lr2_predict_labels = lr2.predict(new_test_data)
>>> sum(lr2_predict_labels == test_labels) # 正确率略微提升
449
(完)