首先有一个暴力的做法,将任意两个点判断,可以得到与之相关的1或3只变色龙:1只是两只变色龙相互喜欢,那么剩下那只就是颜色相同;3只从3只选2只并和自己判断一次,结果为1的那次剩下的那个就是他喜欢的,然后将所有喜欢关系删掉后剩下的就是颜色相同

但这样一开始需要$o(n^2)$次的判断,考虑优化,如果将点划分成若干个集合,每一个集合内部没有特殊关系就可行了,然后就可以再集合中二分来查找了,那么直接对前i-1个点构成的图染成2种颜色(4种颜色容易超过次数),分别进行二分查找即可,次数是$o(nlogn)$的,常数要注意(4种颜色的要注意要取编号最小的颜色,不然会被卡)


[loj3274]变色龙之恋_基础算法-二分[loj3274]变色龙之恋_数学-构造_02


1 #include "chameleon.h"
2 #include <bits/stdc++.h>
3 using namespace std;
4 #define N 1005
5 vector<int>v,p[11],vec[N];
6 int vis[N],to[N],ans[N][2];
7 bool pd(vector<int> &k,int l,int r,int x){
8 p[4].clear();
9 p[4].push_back(x);
10 for(int i=l;i<=r;i++)p[4].push_back(k[i]);
11 return Query(p[4])<p[4].size();
12 }
13 void find(vector<int> &a,int l,int r,int i){
14 int rr=r;
15 while (1){
16 r=rr;
17 if ((vec[i].size()==3)||(!pd(a,l,r,i)))return;
18 while (l<r){
19 int mid=(l+r>>1);
20 if (pd(a,l,mid,i))r=mid;
21 else l=mid+1;
22 }
23 vec[i].push_back(a[l]);
24 vec[a[l]].push_back(i);
25 l++;
26 }
27 }
28 void Solve(int n){
29 n*=2;
30 for(int i=1;i<=n;i++){
31 int flag=4;
32 for(int j=0;j<4;j++)
33 if ((vec[i].size()==3)||(!pd(p[j],0,p[j].size()-1,i)))flag=min(flag,j);
34 else find(p[j],0,p[j].size()-1,i);
35 p[flag].push_back(i);
36 }
37 int t=0;
38 for(int i=1;i<=n;i++){
39 if (vec[i].size()<3)continue;
40 vis[i]=1;
41 for(int j=0;j<2;j++)
42 for(int k=j+1;k<3;k++){
43 v.clear();
44 v.push_back(i);
45 v.push_back(vec[i][j]);
46 v.push_back(vec[i][k]);
47 if (Query(v)==1){
48 to[i]=vec[i][3-j-k];
49 j=k=3;
50 }
51 }
52 if (!to[i])to[i]=vec[i][0];
53 }
54 for(int i=1;i<=n;i++)
55 if (vis[i]){
56 for(int j=0;j<3;j++)
57 if (vec[i][j]==to[i])vec[i][j]=0;
58 for(int j=0;j<3;j++)
59 if (vec[to[i]][j]==i)vec[to[i]][j]=0;
60 }
61 for(int i=1;i<=n;i++)
62 if (vis[i])
63 for(int j=0;j<3;j++)
64 if ((vec[i][j])&&(vec[i][j]<i)&&(vec[vec[i][j]].size()==3)){
65 ans[++t][0]=i;
66 ans[t][1]=vec[i][j];
67 }
68 for(int i=1;i<=n;i++)
69 if (vec[i].size()==1){
70 if ((vec[vec[i][0]].size()==1)&&(i>vec[i][0]))continue;
71 ans[++t][0]=i;
72 ans[t][1]=vec[i][0];
73 }
74 for(int i=1;i<=n/2;i++)Answer(ans[i][0],ans[i][1]);
75 }

View Code