题意:
思路:如上
最后的F(x,y)的推法和求gcd(x,y)=1的(x,y)对数差不多,只不过在推导过程中把原来1的地方换成x*y。
那么我们预处理出i^2*u[i]的前缀和,F(x,y)可以在O(sqrt(n))时间内求出来,而ans的式子也可以在O(sqrt(n))中求出来,
因此最后的时间复杂度是O(n)的。
1 const mo=20101009; 2 var flag,prime,mu:array[0..10000000]of longint; 3 sum:array[0..10000000]of int64; 4 n1,m1,i,j,max,m,t,x,y,t1,t2:longint; 5 ans,pos:int64; 6 7 function ask(n,m:int64):int64; 8 begin 9 n:=n*(n+1) div 2 mod mo; 10 m:=m*(m+1) div 2 mod mo; 11 exit(n*m mod mo); 12 end; 13 14 function clac(n,m:longint):int64; 15 var t1,t2,i,pos:longint; 16 x,y:int64; 17 begin 18 i:=1; clac:=0; 19 while i<=n do 20 begin 21 x:=n div i; y:=m div i; 22 t1:=n div x; t2:=m div y; 23 if t1<t2 then pos:=t1 24 else pos:=t2; 25 clac:=clac+ask(x,y)*(sum[pos]-sum[i-1]) mod mo; 26 clac:=(clac mod mo+mo) mod mo; 27 i:=pos+1; 28 end; 29 end; 30 31 begin 32 assign(input,'bzoj2154.in'); reset(input); 33 assign(output,'bzoj2154.out'); rewrite(output); 34 readln(n1,m1); 35 if n1>m1 then max:=n1 36 else max:=m1; 37 mu[1]:=1; 38 for i:=2 to max do 39 begin 40 if flag[i]=0 then 41 begin 42 inc(m); prime[m]:=i; 43 mu[i]:=-1; 44 end; 45 j:=1; 46 while (j<=m)and(prime[j]*i<=max) do 47 begin 48 t:=prime[j]*i; flag[t]:=1; 49 if i mod prime[j]=0 then 50 begin 51 mu[t]:=0; 52 break; 53 end; 54 mu[t]:=-mu[i]; 55 inc(j); 56 end; 57 end; 58 for i:=1 to max do sum[i]:=(sum[i-1]+int64(mu[i])*i*i) mod mo; 59 if n1>m1 then 60 begin 61 t:=n1; n1:=m1; m1:=t; 62 end; 63 i:=1; 64 while i<=n1 do 65 begin 66 x:=n1 div i; y:=m1 div i; 67 t1:=n1 div x; t2:=m1 div y; 68 if t1<t2 then pos:=t1 69 else pos:=t2; 70 ans:=ans+(pos-i+1)*(pos+i) div 2 mod mo*clac(x,y) mod mo; 71 ans:=ans mod mo; 72 i:=pos+1; 73 end; 74 writeln(ans); 75 close(input); 76 close(output); 77 end.
UPD(2018.10.22):C++
1 #include<cstdio> 2 #include<cstring> 3 #include<string> 4 #include<cmath> 5 #include<iostream> 6 #include<algorithm> 7 #include<map> 8 #include<set> 9 #include<queue> 10 #include<vector> 11 using namespace std; 12 typedef long long ll; 13 typedef unsigned int uint; 14 typedef unsigned long long ull; 15 typedef pair<int,int> PII; 16 typedef vector<int> VI; 17 #define fi first 18 #define se second 19 #define MP make_pair 20 #define MAXN 10000000 21 #define eps 1e-8 22 #define pi acos(-1) 23 #define oo 1e9 24 #define MOD 20101009 25 26 int flag[MAXN+10],prime[MAXN+10],mu[MAXN+10]; 27 ll s[MAXN+10]; 28 29 ll ask(ll n,ll m) 30 { 31 n=n*(n+1)/2%MOD; 32 m=m*(m+1)/2%MOD; 33 return n*m%MOD; 34 } 35 36 ll calc(int n,int m) 37 { 38 int i=1; 39 ll ans=0; 40 while(i<=n) 41 { 42 ll x=n/i; ll y=m/i; 43 ll t1=n/x; ll t2=m/y; 44 ll pos=min(t1,t2); 45 ans+=ask(x,y)*(s[pos]-s[i-1])%MOD; 46 ans=(ans%MOD+MOD)%MOD; 47 i=pos+1; 48 } 49 return ans; 50 } 51 52 int main() 53 { 54 int N,M; 55 scanf("%d%d",&N,&M); 56 int MAX=max(N,M); 57 mu[1]=1; 58 int m=0; 59 for(int i=2;i<=MAX;i++) 60 { 61 if(!flag[i]) 62 { 63 prime[++m]=i; 64 mu[i]=-1; 65 } 66 for(int j=1;j<=m;j++) 67 { 68 int t=prime[j]*i; 69 if(t>MAX) break; 70 flag[t]=1; 71 if(i%prime[j]==0) 72 { 73 mu[t]=0; 74 break; 75 } 76 mu[t]=-mu[i]; 77 } 78 } 79 80 for(int i=1;i<=MAX;i++) s[i]=(s[i-1]+1ll*mu[i]*i*i)%MOD; 81 if(N>M) swap(N,M); 82 int i=1; 83 ll ans=0; 84 while(i<=N) 85 { 86 int x=N/i; int y=M/i; 87 int t1=N/x; int t2=M/y; 88 ll pos=min(t1,t2); 89 ans+=(pos-i+1)*(pos+i)/2*calc(x,y)%MOD; 90 ans%=MOD; 91 i=pos+1; 92 } 93 printf("%lld\n",ans); 94 return 0; 95 } 96