Floyd-Warshall算法(Floyd-Warshallalgorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。

       Floyd-Warshall算法的时间复杂度为n^3,空间复杂度为N^2。

原理

Floyd-Warshall算法_有向图

实现代码

 

#define MAX_VERTEX_NUM 100 //最大顶点数
#define MAX_INT 10000 //无穷大




typedef int AdjType;


typedef struct{
int pi[MAX_VERTEX_NUM];//存放v到vi的一条最短路径
int end;
}PathType;

typedef char VType; //设顶点为字符类型


typedef struct{
VType V[MAX_VERTEX_NUM]; //顶点存储空间
AdjType A[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; //邻接矩阵
}MGraph;//邻接矩阵表示的图


//Floyd算法
//求网G(用邻接矩阵表示)中任意两点间最短路径
//D[][]是最短路径长度矩阵,path[][]最短路径标志矩阵
void Floyd(MGraph * G,int path[][MAX_VERTEX_NUM],int D[][MAX_VERTEX_NUM],int n){
int i,j,k;
for(i=0;i<n;i++){//初始化
for(j=0;j<n;j++){
if(G->A[i][j]<MAX_INT){
path[i][j]=j;
}else{
path[i][j]=-1;
}
D[i][j]=G->A[i][j];
}
}

for(k=0;k<n;k++){//进行n次试探
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(D[i][j]>D[i][k]+D[k][j]){
D[i][j]=D[i][k]+D[k][j];//取小者
path[i][j]=path[i][k];//改Vi的后继
}
}
}
}
}




int main(){
int i,j,k,v=0,n=6;//v为起点,n为顶点个数
MGraph G;
int path[MAX_VERTEX_NUM][MAX_VERTEX_NUM];//v到各顶点的最短路径向量
int D[MAX_VERTEX_NUM][MAX_VERTEX_NUM];//v到各顶点最短路径长度向量

//初始化
AdjType a[MAX_VERTEX_NUM][MAX_VERTEX_NUM]={
{0,12,18,MAX_INT,17,MAX_INT},
{12,0,10,3,MAX_INT,5},
{18,10,0,MAX_INT,21,11},
{MAX_INT,3,MAX_INT,0,MAX_INT,8},
{17,MAX_INT,21,MAX_INT,0,16},
{MAX_INT,5,11,8,16,0}
};
for(i=0;i<n;i++){
for(j=0;j<n;j++){
G.A[i][j]=a[i][j];
}
}

Floyd(&G,path,D,6);

for(i=0;i<n;i++){//输出每对顶点间最短路径长度及最短路径
for(j=0;j<n;j++){
printf("V%d到V%d的最短长度:",i,j);
printf("%d\t",D[i][j]);//输出Vi到Vj的最短路径长度
k=path[i][j];//取路径上Vi的后续Vk
if(k==-1){
printf("There is no path between V%d and V%d\n",i,j);//路径不存在
}else{
printf("最短路径为:");
printf("(V%d",i);//输出Vi的序号i
while(k!=j){//k不等于路径终点j时
printf(",V%d",k);//输出k
k=path[k][j];//求路径上下一顶点序号
}
printf(",V%d)\n",j);//输出路径终点序号
}
printf("\n");
}
}

system("pause");
return 0;
}