简介

在没有Lock之前,我们使用synchronized来控制同步,配合Object的wait()、notify()系列方法可以实现等待/通知模式。在Java SE5后,Java提供了Lock接口,相对于Synchronized而言,Lock提供了条件Condition,对线程的等待、唤醒操作更加详细和灵活。下图是Condition与Object的监视器方法的对比(摘自《Java并发编程的艺术》):

JAVA并发-Condition_等待时间

Condition提供了一系列的方法来对阻塞和唤醒线程:

  1. await() :造成当前线程在接到信号或被中断之前一直处于等待状态。
  2. await(long time, TimeUnit unit) :造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。
  3. awaitNanos(long nanosTimeout) :造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。返回值表示剩余时间,如果在nanosTimesout之前唤醒,那么返回值 = nanosTimeout - 消耗时间,如果返回值 <= 0 ,则可以认定它已经超时了。
  4. awaitUninterruptibly() :造成当前线程在接到信号之前一直处于等待状态。【注意:该方法对中断不敏感】。
  5. awaitUntil(Date deadline) :造成当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态。如果没有到指定时间就被通知,则返回true,否则表示到了指定时间,返回返回false。
  6. signal() :唤醒一个等待线程。该线程从等待方法返回前必须获得与Condition相关的锁。
  7. signal()All :唤醒所有等待线程。能够从等待方法返回的线程必须获得与Condition相关的锁。

Condition是一种广义上的条件队列。他为线程提供了一种更为灵活的等待/通知模式,线程在调用await方法后执行挂起操作,直到线程等待的某个条件为真时才会被唤醒。Condition必须要配合锁一起使用,因为对共享状态变量的访问发生在多线程环境下。一个Condition的实例必须与一个Lock绑定,因此Condition一般都是作为Lock的内部实现。

Condtion的实现

获取一个Condition必须要通过Lock的newCondition()方法。该方法定义在接口Lock下面,返回的结果是绑定到此 Lock 实例的新 Condition 实例。Condition为一个接口,其下仅有一个实现类ConditionObject,由于Condition的操作需要获取相关的锁,而AQS则是同步锁的实现基础,所以ConditionObject则定义为AQS的内部类。定义如下:

public class ConditionObject implements Condition, java.io.Serializable {
}

等待队列

每个Condition对象都包含着一个FIFO队列,该队列是Condition对象通知/等待功能的关键。在队列中每一个节点都包含着一个线程引用,该线程就是在该Condition对象上等待的线程。我们看Condition的定义就明白了:

public class ConditionObject implements Condition, java.io.Serializable {
    private static final long serialVersionUID = 1173984872572414699L;

    //头节点
    private transient Node firstWaiter;
    //尾节点
    private transient Node lastWaiter;

    public ConditionObject() {
    }

    /** 省略方法 **/
}

从上面代码可以看出Condition拥有首节点(firstWaiter),尾节点(lastWaiter)。当前线程调用await()方法,将会以当前线程构造成一个节点(Node),并将节点加入到该队列的尾部。结构如下:

JAVA并发-Condition_等待状态_02

Node里面包含了当前线程的引用。Node定义与AQS的CLH同步队列的节点使用的都是同一个类(AbstractQueuedSynchronized.Node静态内部类)。

Condition的队列结构比CLH同步队列的结构简单些,新增过程较为简单只需要将原尾节点的nextWaiter指向新增节点,然后更新lastWaiter即可。

等待await

调用Condition的await()方法会使当前线程进入等待状态,同时会加入到Condition等待队列同时释放锁。当从await()方法返回时,当前线程一定是获取了Condition相关连的锁。

    public final void await() throws InterruptedException {
        // 当前线程中断
        if (Thread.interrupted())
            throw new InterruptedException();
        //当前线程加入等待队列
        Node node = addConditionWaiter();
        //释放锁
        long savedState = fullyRelease(node);
        int interruptMode = 0;
        /**
         * 检测此节点的线程是否在同步队上,如果不在,则说明该线程还不具备竞争锁的资格,则继续等待
         * 直到检测到此节点在同步队列上
         */
        while (!isOnSyncQueue(node)) {
            //线程挂起
            LockSupport.park(this);
            //如果已经中断了,则退出
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        //竞争同步状态
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        //清理下条件队列中的不是在等待条件的节点
        if (node.nextWaiter != null) // clean up if cancelled
            unlinkCancelledWaiters();
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
    }

此段代码的逻辑是:首先将当前线程新建一个节点同时加入到条件队列中,然后释放当前线程持有的同步状态。然后则是不断检测该节点代表的线程释放出现在CLH同步队列中(收到signal信号之后就会在AQS队列中检测到),如果不存在则一直挂起,否则参与竞争同步状态。

加入条件队列(addConditionWaiter())源码如下:

    private Node addConditionWaiter() {
        Node t = lastWaiter;    //尾节点
        //Node的节点状态如果不为CONDITION,则表示该节点不处于等待状态,需要清除节点
        if (t != null && t.waitStatus != Node.CONDITION) {
            //清除条件队列中所有状态不为Condition的节点
            unlinkCancelledWaiters();
            t = lastWaiter;
        }
        //当前线程新建节点,状态CONDITION
        Node node = new Node(Thread.currentThread(), Node.CONDITION);
        /**
         * 将该节点加入到条件队列中最后一个位置
         */
        if (t == null)
            firstWaiter = node;
        else
            t.nextWaiter = node;
        lastWaiter = node;
        return node;
    }

该方法主要是将当前线程加入到Condition条件队列中。当然在加入到尾节点之前会清楚所有状态不为Condition的节点。

fullyRelease(Node node),负责释放该线程持有的锁。

    final long fullyRelease(Node node) {
        boolean failed = true;
        try {
            //节点状态--其实就是持有锁的数量
            long savedState = getState();
            //释放锁
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }

isOnSyncQueue(Node node):如果一个节点刚开始在条件队列上,现在在同步队列上获取锁则返回true

    final boolean isOnSyncQueue(Node node) {
        //状态为Condition,获取前驱节点为null,返回false
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        //后继节点不为null,肯定在CLH同步队列中
        if (node.next != null)
            return true;

        return findNodeFromTail(node);
    }

unlinkCancelledWaiters():负责将条件队列中状态不为Condition的节点删除

        private void unlinkCancelledWaiters() {
            Node t = firstWaiter;
            Node trail = null;
            while (t != null) {
                Node next = t.nextWaiter;
                if (t.waitStatus != Node.CONDITION) {
                    t.nextWaiter = null;
                    if (trail == null)
                        firstWaiter = next;
                    else
                        trail.nextWaiter = next;
                    if (next == null)
                        lastWaiter = trail;
                }
                else
                    trail = t;
                t = next;
            }
        }

通知signal

调用Condition的signal()方法,将会唤醒在等待队列中等待最长时间的节点(条件队列里的首节点),在唤醒节点前,会将节点移到CLH同步队列中。

    public final void signal() {
        //检测当前线程是否为拥有锁的独
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        //头节点,唤醒条件队列中的第一个节点
        Node first = firstWaiter;
        if (first != null)
            doSignal(first);    //唤醒
    }

该方法首先会判断当前线程是否已经获得了锁,这是前置条件。然后唤醒条件队列中的头节点。

doSignal(Node first):唤醒头节点

    private void doSignal(Node first) {
        do {
            //修改头结点,完成旧头结点的移出工作
            if ( (firstWaiter = first.nextWaiter) == null)
                lastWaiter = null;
            first.nextWaiter = null;
        } while (!transferForSignal(first) &&
                (first = firstWaiter) != null);
    }

doSignal(Node first)主要是做两件事:1.修改头节点,2.调用transferForSignal(Node first) 方法将节点移动到CLH同步队列中。transferForSignal(Node first)源码如下:

     final boolean transferForSignal(Node node) {
        //将该节点从状态CONDITION改变为初始状态0,
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;

        //将节点加入到syn队列中去,返回的是syn队列中node节点前面的一个节点
        Node p = enq(node);
        int ws = p.waitStatus;
        //如果结点p的状态为cancel 或者修改waitStatus失败,则直接唤醒
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }

整个通知的流程如下:

  1. 判断当前线程是否已经获取了锁,如果没有获取则直接抛出异常,因为获取锁为通知的前置条件。
  2. 如果线程已经获取了锁,则将唤醒条件队列的首节点
  3. 唤醒首节点是先将条件队列中的头节点移出,然后调用AQS的enq(Node node)方法将其安全地移到CLH同步队列中
  4. 最后判断如果该节点的同步状态是否为Cancel,或者修改状态为Signal失败时,则直接调用LockSupport唤醒该节点的线程。

总结

等待队列:即ConditionObject构建的Node单向链表队列,一个lock可以有多个等待队列

同步队列:即AQS内部类Node构建的FIFO的双向链表队列,也叫CLH同步队列,一个lock只能有一个同步队列

一个线程获取锁后,通过调用Condition的await()方法,会将当前线程先加入到条件队列中,然后释放锁,最后通过isOnSyncQueue(Node node)方法不断自检看节点是否已经在CLH同步队列了,如果是则尝试获取锁,否则一直挂起。当线程调用signal()方法后,程序首先检查当前线程是否获取了锁,然后通过doSignal(Node first)方法唤醒等待队列的首节点。被唤醒的线程,将从await()方法中的while循环中退出来,然后调用acquireQueued()方法竞争同步状态。

图1

JAVA并发-Condition_等待队列_03

图2

JAVA并发-Condition_java_04

上面这个gif动画中,等待队列,Condition队列描述有问题,其他挺好的。

图3

JAVA并发-Condition_java_05

应用

下面是JAVA官方提供的生产消费模式案例:

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class Main {
    public static void main(String[] args)  {
        final BoundedBuffer boundedBuffer = new BoundedBuffer();

        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("t1 run");
                for (int i=0;i<20;i++) {
                    try {
                        System.out.println("putting..");
                        boundedBuffer.put(Integer.valueOf(i));
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }

        }) ;

        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                for (int i=0;i<20;i++) {
                    try {
                        Object val = boundedBuffer.take();
                        System.out.println(val);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }

        }) ;

        t1.start();
        t2.start();
    }

    /**
     * BoundedBuffer 是一个定长100的集合,当集合中没有元素时,take方法需要等待,直到有元素时才返回元素
     * 当其中的元素数达到最大值时,要等待直到元素被take之后才执行put的操作
     * @author yukaizhao
     *
     */
    static class BoundedBuffer {
        final Lock lock = new ReentrantLock();
        final Condition notFull = lock.newCondition();
        final Condition notEmpty = lock.newCondition();

        final Object[] items = new Object[100];
        int putptr, takeptr, count;

        public void put(Object x) throws InterruptedException {
            System .out.println("put wait lock");
            lock.lock();
            System.out.println("put get lock");
            try {
                while (count == items.length) {
                    System.out.println("buffer full, please wait");
                    notFull.await();
                }

                items[putptr] = x;
                if (++putptr == items.length)
                    putptr = 0;
                ++count;
                notEmpty.signal();
            } finally {
                lock.unlock();
            }
        }
        
        public Object take() throws InterruptedException {
            System.out.println("take wait lock");
            lock.lock();
            System.out.println("take get lock");
            try {
                while (count == 0) {
                    System.out.println("no elements, please wait");
                    notEmpty.await();
                }
                Object x = items[takeptr];
                if (++takeptr == items.length)
                    takeptr = 0;
                --count;
                notFull.signal();
                return x;
            } finally {
                lock.unlock();
            }
        }
    }
}

参考:

【死磕Java并发】—–J.U.C之Condition

Java 并发编程 J.U.C 之 Condition

Java锁详解(二)------ LockSupport 与 Condition

AQS之Condition实现分析

深入浅出-AQS的Condition实现原理

深入剖析基于并发AQS的(独占锁)重入锁(ReetrantLock)及其Condition实现原理