Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
题意:给定m条边和n个顶点(从1開始)。边为(u。v,c)源点是1,汇点是n。求最大流。
题解:Dinic + 链式前向星,新模板get.
#include <stdio.h> #include <string.h> #define maxn 205 #define maxm 410 #define inf 0x3f3f3f3f int head[maxn], n, m, source, sink, id; // n个点m条边 struct Node { int u, v, c, next; } E[maxm]; int que[maxn], pre[maxn], Layer[maxn]; bool vis[maxn]; void addEdge(int u, int v, int c) { E[id].u = u; E[id].v = v; E[id].c = c; E[id].next = head[u]; head[u] = id++; E[id].u = v; E[id].v = u; E[id].c = 0; E[id].next = head[v]; head[v] = id++; } void getMap() { int u, v, c; id = 0; memset(head, -1, sizeof(int) * (n + 1)); source = 1; sink = n; while(m--) { scanf("%d%d%d", &u, &v, &c); addEdge(u, v, c); } } bool countLayer() { memset(Layer, 0, sizeof(int) * (n + 1)); int id = 0, front = 0, u, v, i; Layer[source] = 1; que[id++] = source; while(front != id) { u = que[front++]; for(i = head[u]; i != -1; i = E[i].next) { v = E[i].v; if(E[i].c && !Layer[v]) { Layer[v] = Layer[u] + 1; if(v == sink) return true; else que[id++] = v; } } } return false; } int Dinic() { int i, u, v, minCut, maxFlow = 0, pos, id = 0; while(countLayer()) { memset(vis, 0, sizeof(bool) * (n + 1)); memset(pre, -1, sizeof(int) * (n + 1)); que[id++] = source; vis[source] = 1; while(id) { u = que[id - 1]; if(u == sink) { minCut = inf; for(i = pre[sink]; i != -1; i = pre[E[i].u]) if(minCut > E[i].c) { minCut = E[i].c; pos = E[i].u; } maxFlow += minCut; for(i = pre[sink]; i != -1; i = pre[E[i].u]) { E[i].c -= minCut; E[i^1].c += minCut; } while(que[id-1] != pos) vis[que[--id]] = 0; } else { for(i = head[u]; i != -1; i = E[i].next) if(E[i].c && Layer[u] + 1 == Layer[v = E[i].v] && !vis[v]) { vis[v] = 1; que[id++] = v; pre[v] = i; break; } if(i == -1) --id; } } } return maxFlow; } void solve() { printf("%d\n", Dinic()); } int main() { while(scanf("%d%d", &m, &n) == 2) { getMap(); solve(); } }
版权声明:本文博客原创文章。博客,未经同意,不得转载。