Yet Another Number Sequence

Description

Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recurrence relation:

F1 = 1, F2 = 2, Fi = Fi - 1 + Fi - 2 (i > 2).

We'll define a new number sequence Ai(k) by the formula:

Ai(k) = Fi × ik (i ≥ 1).

In this problem, your task is to calculate the following sum: A1(k) + A2(k) + ... + An(k). The answer can be very large, so print it modulo1000000007 (109 + 7).

Input

The first line contains two space-separated integers nk (1 ≤ n ≤ 1017; 1 ≤ k ≤ 40).

Output

Print a single integer — the sum of the first n elements of the sequence Ai(k) modulo 1000000007 (109 + 7).

Sample Input

Input

1 1

Output

1

Input

4 1

Output

34

Input

5 2

Output

316

Input

7 4

Output

73825


 


 

【分析】
哈哈照着上一题的方法我就弄出来了~~
应该是形如 x^k的形式,x很大,k较小的时候可以用二项式定理展开,求递推式然后矩阵加速。。
就这样,qpow n次就好啦~
代码如下:


【 CodeForces - 392C】  Yet Another Number Sequence (二项式展开+矩阵加速)_#include【 CodeForces - 392C】  Yet Another Number Sequence (二项式展开+矩阵加速)_i++_02


1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 #include<algorithm>
6 #include<queue>
7 #include<cmath>
8 using namespace std;
9 #define Mod 1000000007
10 #define Maxn 110
11 #define LL long long
12
13 struct node
14 {
15 LL a[Maxn][Maxn];
16 }t[5];
17
18 LL c[Maxn][Maxn];
19 LL n,k;
20
21 void init()
22 {
23 memset(c,0,sizeof(c));
24 for(LL i=0;i<=80;i++) c[i][0]=1;
25 for(LL i=1;i<=80;i++)
26 for(LL j=1;j<=80;j++)
27 c[i][j]=(c[i-1][j-1]+c[i-1][j])%Mod;
28 }
29
30 void get_m()
31 {
32 for(LL i=k+1;i<=2*k+1;i++)
33 {
34 for(LL j=0;j<=i-k-1;j++) t[0].a[i][j]=c[i-k-1][j];
35 for(LL j=i+1;j<=2*k+2;j++) t[0].a[i][j]=0;
36 }
37 for(LL i=0;i<=k;i++)
38 {
39 for(LL j=0;j<=i;j++) t[0].a[i][j]=t[0].a[i][j+k+1]=c[i][j];
40 for(LL j=i+1;j<=k;j++) t[0].a[i][j]=t[0].a[i][j+k+1]=0;
41 t[0].a[i][2*k+2]=0;
42 }
43 for(LL i=0;i<=2*k+1;i++) t[0].a[2*k+2][i]=0;
44 t[0].a[2*k+2][2*k+2]=t[0].a[2*k+2][k]=1;
45 }
46
47 void get_un()
48 {
49 memset(t[1].a,0,sizeof(t[1].a));
50 for(LL i=0;i<=2*k+2;i++) t[1].a[i][i]=1;
51 }
52
53 void mul(LL x,LL y,LL z)
54 {
55 for(LL i=0;i<=2*k+2;i++)
56 for(LL j=0;j<=2*k+2;j++)
57 {
58 t[2].a[i][j]=0;
59 for(LL l=0;l<=2*k+2;l++)
60 t[2].a[i][j]=(t[2].a[i][j]+t[y].a[i][l]*t[z].a[l][j])%Mod;
61 }
62 t[x]=t[2];
63 }
64
65 void qpow(LL b)
66 {
67 get_un();
68 while(b)
69 {
70 if(b&1) mul(1,0,1);
71 mul(0,0,0);
72 b>>=1;
73 }
74 }
75
76 int main()
77 {
78 init();
79 scanf("%lld%lld",&n,&k);
80 get_m();
81 qpow(n);
82 LL ans=0;
83 for(LL i=0;i<2*k+2;i++) ans=(ans+t[1].a[2*k+2][i])%Mod;
84 printf("%lld\n",ans);
85 return 0;
86 }

a