【一个比较经典的算法题目】
题目链接:
http://lx.lanqiao.org/problem.page?gpid=T235
http://noi.openjudge.cn/ch0202/8758/
 
问题描述
  任何一个正整数都可以用2进制表示,例如:137的2进制表示为10001001。
  将这种2进制表示写成2的次幂的和的形式,令次幂高的排在前面,可得到如下表达式:137=2^7+2^3+2^0
  现在约定幂次用括号来表示,即a^b表示为a(b)
  此时,137可表示为:2(7)+2(3)+2(0)
  进一步:7=2^2+2+2^0 (2^1用2表示)
  3=2+2^0 
  所以最后137可表示为:2(2(2)+2+2(0))+2(2+2(0))+2(0)
  又如:1315=2^10+2^8+2^5+2+1
  所以1315最后可表示为:
  2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
  正整数(1<=n<=20000)
输出格式
  符合约定的n的0,2表示(在表示中不能有空格)
样例输入
  137
样例输出
  2(2(2)+2+2(0))+2(2+2(0))+2(0)
样例输入
  1315
样例输出
  2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
提示
  用递归实现会比较简单,可以一边递归一边输出
分析:
本题可以参考一个算法:递归输出某十进制数的二进制表示的算法。(主要是在递归回溯的时候才输出,而非计算出来就输出。)
本着从易到难的原则,可以考虑先实现将137表示为:2(7)+2(3)+2(0)的程序。
关于加号的输出:可以考虑判断当前项是否二进制序列的最高位(传入下一层的数是0)。是最高位则当前项左侧不输出“+”,否则在当前项左侧输出“+”.
关于把指数也转变为0和2的序列:在输出每一项时判断指数是否超过1,超过则先输出“2(”,然后把该指数与0传入递归函数,递归显示该指数的表示。然后在输出后半边括号。
 
嗯可以先看看递归输出一个整数的二进制序列:
程序0:
#include <stdio.h>
void fun(int n)
{
int t;
if(n==0) return; else { t=n%2; fun(n/2); printf("%d",t); } } int main() { fun(5); return 0; }

 

程序一:实现将137表示为:2(7)+2(3)+2(0)的程序.
 1 #include <stdio.h>
 2 void toBinary(int n,int x);
 3 int main()
 4 {
 5     int n;
 6     freopen("out1.txt","w",stdout);
 7     n=1;
 8     while(n<=255)
 9     {
10         //scanf("%d",&n);
11         printf("%d---->",n);
12         toBinary(n,0);
13         printf("\n");
14         n++;
15     }
16     
17     return 0;
18 }
19 void toBinary(int n,int x)
20 {
21     int t;
22     if(n==0)
23         return;
24     else
25     {
26         t=n%2;
27         toBinary(n/2,x+1);
28         if(t)
29         {
30             if(x==1)
31             {
32                 if(n/2==0)
33                     printf("2");
34                 else printf("+2");
35             }
36             else
37             {
38                 if(n/2==0)
39                     printf("2(%d)",x);
40                 else printf("+2(%d)",x);
41             }
42         }
43     }
44 }

 

程序二:完整程序的实现。
 1 #include <stdio.h>
 2 void toBinary(int n,int x);
 3 int main()
 4 {
 5     int n;
 6     /*scanf("%d",&n);
 7     toBinary(n,0);*/
 8     
 9     freopen("out2.txt","w",stdout);
10     n=1;
11     while(n<=255)
12     {
13         //scanf("%d",&n);
14         printf("%d---->",n);
15         toBinary(n,0);
16         printf("\n");
17         n++;
18     }
19     
20     return 0;
21 }
22 void toBinary(int n,int x)
23 {
24     int t;
25     if(n==0)
26         return;
27     else
28     {
29         t=n%2;
30         toBinary(n/2,x+1);
31         if(t)
32         {
33             if(x==1)
34             {
35                 if(n/2==0)
36                     printf("2");
37                 else printf("+2");
38             }
39             else
40             {
41                 if(n/2==0)
42                 {
43                     //printf("2(%d)",x);
44                     if(x==0) printf("2(0)");
45                     else
46                     {
47                         printf("2(");
48                         toBinary(x,0);
49                         printf(")");
50                     }
51                 }
52                 else
53                 {
54                     //printf("+2(%d)",x);
55                     if(x==0) printf("+2(0)");
56                     else
57                     {
58                         printf("+2(");
59                         toBinary(x,0);
60                         printf(")");
61                     }
62                 }
63             }
64         }
65     }
66 }

 更新:上述代码的if逻辑可以简化。

 1 #include <stdio.h>
 2 void toBinary(int n,int x);
 3 int main()
 4 {
 5     int n;
 6     /*scanf("%d",&n);
 7     toBinary(n,0);*/
 8     
 9     freopen("out2.txt","w",stdout);
10     n=1;
11     while(n<=255)
12     {
13         //scanf("%d",&n);
14         printf("%d---->",n);
15         toBinary(n,0);
16         printf("\n");
17         n++;
18     }
19     
20     return 0;
21 }
22 void toBinary(int n,int x)
23 {
24     int t;
25     if(n==0)
26         return;
27     else
28     {
29         t=n%2;
30         toBinary(n/2,x+1);
31         if(t)
32         {
33             if(x==1)
34             {
35                 if(n/2==0)
36                     printf("2");
37                 else printf("+2");
38             }
39             else
40             {
41                 if(n/2!=0)printf("+");
42                 
43                 if(x==0) printf("2(0)");
44                 else
45                 {
46                     printf("2(");
47                     toBinary(x,0);
48                     printf(")");
49                 }
50             }
51         }
52     }
53 }

 

2019年3月15日,刘俊东童鞋写了一段代码解决这道题,感觉虽有不足,但也算是思路新奇,可以一睹风采:

2的次幂表示【递归算法训练】_#include2的次幂表示【递归算法训练】_i++_02
 1 #include <stdio.h>
 2 int mi(int a,int b)
 3 {
 4     int i,sum=1;
 5     for(i=0;i<b;i++)
 6       sum=sum*a;
 7     return sum;  
 8 }
 9 void fun(int n)
10 {
11     int t;
12     for(int i=0;i<16;i++)
13     {
14         t=i;
15         if(mi(2,i)>n)
16         {t--;break;}
17     }
18     if(t==0) printf("2(0)");
19     if(t==1) printf("2");
20     if(t>1) 
21     {
22         printf("2(");
23         fun(t);
24         printf(")");
25     }
26     if(n!=mi(2,t)) 
27     {    
28         printf("+");
29         fun(n-mi(2,t));
30     }
31 }
32 int main(int argc, char *argv[])
33 {
34     int p;
35     scanf("%d",&p);
36     fun(p);
37     return 0;
38 }
View Code