2019-09-07 16:34:48

  • 877. Stone Game

问题描述:

动态规划/MinMax-Stone Game_问题求解

动态规划/MinMax-Stone Game_i++_02 

问题求解:

典型的博弈问题,也是一个典型的min-max问题。通常使用算diff的方法把min-max转为求max。

dp[i][j] : i ~ j 玩家 A 和 玩家 B 得分的diff。

    public boolean stoneGame(int[] piles) {
        int n = piles.length;
        int[][] dp = new int[n][n];
        return helper(piles, 0, n - 1, dp) > 0;
    }
    
    private int helper(int[] piles, int begin, int end, int[][] dp) {
        if (dp[begin][end] != 0) return dp[begin][end];
        if (begin == end) return dp[begin][end] = piles[begin];
        return dp[begin][end] = Math.max(piles[begin] - helper(piles, begin + 1, end, dp), piles[end] - helper(piles, begin, end - 1, dp));
    }

  

  • 1140. Stone Game II

问题描述:

动态规划/MinMax-Stone Game_i++_03

动态规划/MinMax-Stone Game_问题求解_04 

问题求解:

    public int stoneGameII(int[] piles) {
        int n = piles.length;
        int[][] dp = new int[n][n];
        return (sum(piles, 0, n - 1) + helper(piles, 0, 1, dp, n)) / 2; 
    }
    
    private int helper(int[] piles, int s, int m, int[][] dp, int n) {
        if (dp[s][m] != 0) return dp[s][m];
        if (n - s <= 2 * m) return dp[s][m] = sum(piles, s, n - 1);
        int best = Integer.MIN_VALUE;
        int curSum = 0;
        for (int i = 1; i <= 2 * m; i++) {
            curSum += piles[s + i - 1];
            best = Math.max(best, curSum - helper(piles, s + i, Math.max(i, m), dp, n));
        }
        return dp[s][m] = best;
    }
    
    private int sum(int[] nums, int l, int r) {
        int res = 0;
        for (int i = l; i <= r; i++) {
            res += nums[i];
        }
        return res;
    }