一、背景介绍

YOLO算法全称You Only Look Once,是Joseph Redmon等人于15年3月发表的一篇文章。本实验目标为实现YOLO算法,借鉴了一部分材料,最终实现了轻量级的简化版YOLO——tiny YOLO,其优势在于实现简单,目标检测迅速。

[1]文章链接:https://arxiv.org/abs/1506.02640

[2]YOLO官网链接:https://pjreddie.com/darknet/yolo/

二、算法原理简述

相较于RCNN系列算法,YOLO算法最大的创新在于将物体检测作为回归问题来求解,而RCNN系列算法是将目标检测用一个region proposal + CNN来作为分类问题求解。 如下图所示,YOLO通过对输入图像进行推测,得到图中所有物体的位置及其所属类别的相应概率

深度学习(三)——tiny YOLO算法实现实时目标检测(tensorflow实现)_sed

YOLO的网络模型结构包含有24个卷积层和2个全链接层,其具体结构如下:

深度学习(三)——tiny YOLO算法实现实时目标检测(tensorflow实现)_ide_02

作者将YOLO算法应用于了不同数据集,进行过算法准确度的验证,平均来看,YOLO的目标检测准确度约为60%左右,这个精度已经算不错了。同时,YOLO的识别速度可以达到45帧,改进版的fast YOLO可以达到155帧,下面是从官网获取的关于COCO Dataset的模型应用结果统计:

深度学习(三)——tiny YOLO算法实现实时目标检测(tensorflow实现)_目标检测_03

从中可以看到, Tiny YOLO虽然准确度平均只有23.7%,但是其识别速度可以达到244帧。

下面再给出论文里的模型识别结果图,效果还是不错的:

深度学习(三)——tiny YOLO算法实现实时目标检测(tensorflow实现)_ide_04

最后,附上几个网上关于YOLO模型几个比较好的解读:

[3]YOLO_原理详述

[4][目标检测]YOLO原理

本文重点是实现简化版的tiny YOLO模型,主要参考了代码:

[5]https://github.com/gliese581gg/YOLO_tensorflow

三、算法实现

1.所用文件

首先要介绍一下所有用到的文件及其位置的安放。我的文件具体包含:

  1.  
    -- test (测试图像文件夹)
  2.  
    |------ 000001.jpg (测试文件)
  3.  
    -- weights (权重文件夹)
  4.  
    |------ YOLO_tiny.ckpt (权值文件)
  5.  
    -- main.py (运行文件)

首先是test文件夹,里面放置需要测试的jpg文件就可以了。

其次是weights文件夹,里面放置的是作者训练好的ckpt文件,该文件的下载可以从google drive中下载:

深度学习(三)——tiny YOLO算法实现实时目标检测(tensorflow实现)_目标检测_05

不过从google drive中下载需要自己手动FQ,而且下载速度会非常慢,我将该文件传到了自己的百度云上,有需要的话可以自行下载:

链接:https://pan.baidu.com/s/1bug9ZX5P4OghfRxvE389fQ

提取码:8tqz

 最后是main.py文件,具体如何写下面我会详细介绍。

2.算法实现

我的main.py文件是参考了程序YOLO_tiny_tf.py,并加上了自己的一些改进实现的。先来看一下tiny YOLO的模型结构:

深度学习(三)——tiny YOLO算法实现实时目标检测(tensorflow实现)_tensorflow_06

可以看到,tiny YOLO基本为VGG19模型的改进,然后将模型应用于图像中,对目标进行检测,可以按照这个思路,编写main.py文件,具体代码为:

  1.  
    import numpy as np
  2.  
    import tensorflow as tf
  3.  
    import cv2
  4.  
    import time
  5.  
     
  6.  
     
  7.  
    class YOLO_TF:
  8.  
    fromfile = 'test/person.jpg'
  9.  
    tofile_img = 'test/output.jpg'
  10.  
    tofile_txt = 'test/output.txt'
  11.  
    imshow = True
  12.  
    filewrite_img = False
  13.  
    filewrite_txt = False
  14.  
    disp_console = True
  15.  
    weights_file = 'weights/YOLO_tiny.ckpt'
  16.  
    alpha = 0.1
  17.  
    threshold = 0.2
  18.  
    iou_threshold = 0.5
  19.  
    num_class = 20
  20.  
    num_box = 2
  21.  
    grid_size = 7
  22.  
    classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
  23.  
    "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
  24.  
     
  25.  
    w_img = 640
  26.  
    h_img = 480
  27.  
     
  28.  
    def __init__(self, fromfile=None, tofile_img=None, tofile_txt=None):
  29.  
    self.fromfile = fromfile
  30.  
     
  31.  
    self.tofile_img = tofile_img
  32.  
    self.filewrite_img = True
  33.  
     
  34.  
    self.tofile_txt = tofile_txt
  35.  
    self.filewrite_txt = True
  36.  
     
  37.  
    self.imshow = True
  38.  
    self.disp_console = True
  39.  
     
  40.  
    self.build_networks()
  41.  
    if self.fromfile is not None: self.detect_from_file(self.fromfile)
  42.  
     
  43.  
    def build_networks(self):
  44.  
    if self.disp_console: print("Building YOLO_tiny graph...")
  45.  
    self.x = tf.placeholder('float32', [None, 448, 448, 3])
  46.  
    self.conv_1 = self.conv_layer(1, self.x, 16, 3, 1)
  47.  
    self.pool_2 = self.pooling_layer(2, self.conv_1, 2, 2)
  48.  
    self.conv_3 = self.conv_layer(3, self.pool_2, 32, 3, 1)
  49.  
    self.pool_4 = self.pooling_layer(4, self.conv_3, 2, 2)
  50.  
    self.conv_5 = self.conv_layer(5, self.pool_4, 64, 3, 1)
  51.  
    self.pool_6 = self.pooling_layer(6, self.conv_5, 2, 2)
  52.  
    self.conv_7 = self.conv_layer(7, self.pool_6, 128, 3, 1)
  53.  
    self.pool_8 = self.pooling_layer(8, self.conv_7, 2, 2)
  54.  
    self.conv_9 = self.conv_layer(9, self.pool_8, 256, 3, 1)
  55.  
    self.pool_10 = self.pooling_layer(10, self.conv_9, 2, 2)
  56.  
    self.conv_11 = self.conv_layer(11, self.pool_10, 512, 3, 1)
  57.  
    self.pool_12 = self.pooling_layer(12, self.conv_11, 2, 2)
  58.  
    self.conv_13 = self.conv_layer(13, self.pool_12, 1024, 3, 1)
  59.  
    self.conv_14 = self.conv_layer(14, self.conv_13, 1024, 3, 1)
  60.  
    self.conv_15 = self.conv_layer(15, self.conv_14, 1024, 3, 1)
  61.  
    self.fc_16 = self.fc_layer(16, self.conv_15, 256, flat=True, linear=False)
  62.  
    self.fc_17 = self.fc_layer(17, self.fc_16, 4096, flat=False, linear=False)
  63.  
    # skip dropout_18
  64.  
    self.fc_19 = self.fc_layer(19, self.fc_17, 1470, flat=False, linear=True)
  65.  
    self.sess = tf.Session()
  66.  
    self.sess.run(tf.global_variables_initializer())
  67.  
    self.saver = tf.train.Saver()
  68.  
    self.saver.restore(self.sess, self.weights_file)
  69.  
    if self.disp_console: print("Loading complete!" + '\n')
  70.  
     
  71.  
    def conv_layer(self, idx, inputs, filters, size, stride):
  72.  
    channels = inputs.get_shape()[3]
  73.  
    weight = tf.Variable(tf.truncated_normal([size, size, int(channels), filters], stddev=0.1))
  74.  
    biases = tf.Variable(tf.constant(0.1, shape=[filters]))
  75.  
     
  76.  
    pad_size = size // 2
  77.  
    pad_mat = np.array([[0, 0], [pad_size, pad_size], [pad_size, pad_size], [0, 0]])
  78.  
    inputs_pad = tf.pad(inputs, pad_mat)
  79.  
     
  80.  
    conv = tf.nn.conv2d(inputs_pad, weight, strides=[1, stride, stride, 1], padding='VALID',
  81.  
    name=str(idx) + '_conv')
  82.  
    conv_biased = tf.add(conv, biases, name=str(idx) + '_conv_biased')
  83.  
    if self.disp_console: print(
  84.  
    ' Layer %d : Type = Conv, Size = %d * %d, Stride = %d, Filters = %d, Input channels = %d' % (
  85.  
    idx, size, size, stride, filters, int(channels)))
  86.  
    return tf.maximum(self.alpha * conv_biased, conv_biased, name=str(idx) + '_leaky_relu')
  87.  
     
  88.  
    def pooling_layer(self, idx, inputs, size, stride):
  89.  
    if self.disp_console: print(
  90.  
    ' Layer %d : Type = Pool, Size = %d * %d, Stride = %d' % (idx, size, size, stride))
  91.  
    return tf.nn.max_pool(inputs, ksize=[1, size, size, 1], strides=[1, stride, stride, 1], padding='SAME',
  92.  
    name=str(idx) + '_pool')
  93.  
     
  94.  
    def fc_layer(self, idx, inputs, hiddens, flat=False, linear=False):
  95.  
    input_shape = inputs.get_shape().as_list()
  96.  
    if flat:
  97.  
    dim = input_shape[1] * input_shape[2] * input_shape[3]
  98.  
    inputs_transposed = tf.transpose(inputs, (0, 3, 1, 2))
  99.  
    inputs_processed = tf.reshape(inputs_transposed, [-1, dim])
  100.  
    else:
  101.  
    dim = input_shape[1]
  102.  
    inputs_processed = inputs
  103.  
    weight = tf.Variable(tf.truncated_normal([dim, hiddens], stddev=0.1))
  104.  
    biases = tf.Variable(tf.constant(0.1, shape=[hiddens]))
  105.  
    if self.disp_console: print(
  106.  
    ' Layer %d : Type = Full, Hidden = %d, Input dimension = %d, Flat = %d, Activation = %d' % (
  107.  
    idx, hiddens, int(dim), int(flat), 1 - int(linear)))
  108.  
    if linear: return tf.add(tf.matmul(inputs_processed, weight), biases, name=str(idx) + '_fc')
  109.  
    ip = tf.add(tf.matmul(inputs_processed, weight), biases)
  110.  
    return tf.maximum(self.alpha * ip, ip, name=str(idx) + '_fc')
  111.  
     
  112.  
    def detect_from_cvmat(self, img):
  113.  
    s = time.time()
  114.  
    self.h_img, self.w_img, _ = img.shape
  115.  
    img_resized = cv2.resize(img, (448, 448))
  116.  
    img_RGB = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB)
  117.  
    img_resized_np = np.asarray(img_RGB)
  118.  
    inputs = np.zeros((1, 448, 448, 3), dtype='float32')
  119.  
    inputs[0] = (img_resized_np / 255.0) * 2.0 - 1.0
  120.  
    in_dict = {self.x: inputs}
  121.  
    net_output = self.sess.run(self.fc_19, feed_dict=in_dict)
  122.  
    self.result = self.interpret_output(net_output[0])
  123.  
    self.show_results(img, self.result)
  124.  
    strtime = str(time.time() - s)
  125.  
    if self.disp_console: print('Elapsed time : ' + strtime + ' secs' + '\n')
  126.  
     
  127.  
    def detect_from_file(self, filename):
  128.  
    if self.disp_console: print('Detect from ' + filename)
  129.  
    img = cv2.imread(filename)
  130.  
    self.detect_from_cvmat(img)
  131.  
     
  132.  
    def interpret_output(self, output):
  133.  
    probs = np.zeros((7, 7, 2, 20))
  134.  
    class_probs = np.reshape(output[0:980], (7, 7, 20))
  135.  
    scales = np.reshape(output[980:1078], (7, 7, 2))
  136.  
    boxes = np.reshape(output[1078:], (7, 7, 2, 4))
  137.  
    offset = np.transpose(np.reshape(np.array([np.arange(7)] * 14), (2, 7, 7)), (1, 2, 0))
  138.  
     
  139.  
    boxes[:, :, :, 0] += offset
  140.  
    boxes[:, :, :, 1] += np.transpose(offset, (1, 0, 2))
  141.  
    boxes[:, :, :, 0:2] = boxes[:, :, :, 0:2] / 7.0
  142.  
    boxes[:, :, :, 2] = np.multiply(boxes[:, :, :, 2], boxes[:, :, :, 2])
  143.  
    boxes[:, :, :, 3] = np.multiply(boxes[:, :, :, 3], boxes[:, :, :, 3])
  144.  
     
  145.  
    boxes[:, :, :, 0] *= self.w_img
  146.  
    boxes[:, :, :, 1] *= self.h_img
  147.  
    boxes[:, :, :, 2] *= self.w_img
  148.  
    boxes[:, :, :, 3] *= self.h_img
  149.  
     
  150.  
    for i in range(2):
  151.  
    for j in range(20):
  152.  
    probs[:, :, i, j] = np.multiply(class_probs[:, :, j], scales[:, :, i])
  153.  
     
  154.  
    filter_mat_probs = np.array(probs >= self.threshold, dtype='bool')
  155.  
    filter_mat_boxes = np.nonzero(filter_mat_probs)
  156.  
    boxes_filtered = boxes[filter_mat_boxes[0], filter_mat_boxes[1], filter_mat_boxes[2]]
  157.  
    probs_filtered = probs[filter_mat_probs]
  158.  
    classes_num_filtered = np.argmax(filter_mat_probs, axis=3)[
  159.  
    filter_mat_boxes[0], filter_mat_boxes[1], filter_mat_boxes[2]]
  160.  
     
  161.  
    argsort = np.array(np.argsort(probs_filtered))[::-1]
  162.  
    boxes_filtered = boxes_filtered[argsort]
  163.  
    probs_filtered = probs_filtered[argsort]
  164.  
    classes_num_filtered = classes_num_filtered[argsort]
  165.  
     
  166.  
    for i in range(len(boxes_filtered)):
  167.  
    if probs_filtered[i] == 0: continue
  168.  
    for j in range(i + 1, len(boxes_filtered)):
  169.  
    if self.iou(boxes_filtered[i], boxes_filtered[j]) > self.iou_threshold:
  170.  
    probs_filtered[j] = 0.0
  171.  
     
  172.  
    filter_iou = np.array(probs_filtered > 0.0, dtype='bool')
  173.  
    boxes_filtered = boxes_filtered[filter_iou]
  174.  
    probs_filtered = probs_filtered[filter_iou]
  175.  
    classes_num_filtered = classes_num_filtered[filter_iou]
  176.  
     
  177.  
    result = []
  178.  
    for i in range(len(boxes_filtered)):
  179.  
    result.append([self.classes[classes_num_filtered[i]], boxes_filtered[i][0], boxes_filtered[i][1],
  180.  
    boxes_filtered[i][2], boxes_filtered[i][3], probs_filtered[i]])
  181.  
     
  182.  
    return result
  183.  
     
  184.  
    def show_results(self, img, results):
  185.  
    img_cp = img.copy()
  186.  
    if self.filewrite_txt:
  187.  
    ftxt = open(self.tofile_txt, 'w')
  188.  
    for i in range(len(results)):
  189.  
    x = int(results[i][1])
  190.  
    y = int(results[i][2])
  191.  
    w = int(results[i][3]) // 2
  192.  
    h = int(results[i][4]) // 2
  193.  
    if self.disp_console: print(
  194.  
    ' class : ' + results[i][0] + ' , [x,y,w,h]=[' + str(x) + ',' + str(y) + ',' + str(
  195.  
    int(results[i][3])) + ',' + str(int(results[i][4])) + '], Confidence = ' + str(results[i][5]))
  196.  
    if self.filewrite_img or self.imshow:
  197.  
    cv2.rectangle(img_cp, (x - w, y - h), (x + w, y + h), (0, 255, 0), 2)
  198.  
    cv2.rectangle(img_cp, (x - w, y - h - 20), (x + w, y - h), (125, 125, 125), -1)
  199.  
    cv2.putText(img_cp, results[i][0] + ' : %.2f' % results[i][5], (x - w + 5, y - h - 7),
  200.  
    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
  201.  
    if self.filewrite_txt:
  202.  
    ftxt.write(results[i][0] + ',' + str(x) + ',' + str(y) + ',' + str(w) + ',' + str(h) + ',' + str(
  203.  
    results[i][5]) + '\n')
  204.  
    if self.filewrite_img:
  205.  
    if self.disp_console: print(' image file writed : ' + self.tofile_img)
  206.  
    cv2.imwrite(self.tofile_img, img_cp)
  207.  
    if self.imshow:
  208.  
    cv2.imshow('YOLO_tiny detection', img_cp)
  209.  
    cv2.waitKey(1)
  210.  
    if self.filewrite_txt:
  211.  
    if self.disp_console: print(' txt file writed : ' + self.tofile_txt)
  212.  
    ftxt.close()
  213.  
     
  214.  
    def iou(self, box1, box2):
  215.  
    tb = min(box1[0] + 0.5 * box1[2], box2[0] + 0.5 * box2[2]) - max(box1[0] - 0.5 * box1[2],
  216.  
    box2[0] - 0.5 * box2[2])
  217.  
    lr = min(box1[1] + 0.5 * box1[3], box2[1] + 0.5 * box2[3]) - max(box1[1] - 0.5 * box1[3],
  218.  
    box2[1] - 0.5 * box2[3])
  219.  
    if tb < 0 or lr < 0:
  220.  
    intersection = 0
  221.  
    else:
  222.  
    intersection = tb * lr
  223.  
    return intersection / (box1[2] * box1[3] + box2[2] * box2[3] - intersection)
  224.  
     
  225.  
     
  226.  
    if __name__ == '__main__':
  227.  
    fromfile = 'test/000001.jpg'
  228.  
    tofile_img = 'test/output.jpg'
  229.  
    tofile_txt = 'test/output.txt'
  230.  
     
  231.  
    yolo = YOLO_TF(fromfile=fromfile, tofile_img=tofile_img, tofile_txt=tofile_txt)
  232.  
    cv2.waitKey(1000)
四、效果测试

直接运行上述代码,便可执行程序。根据代码:

  1.  
    classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
  2.  
    "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]

tiny YOLO只可识别上述常见的20类对象。关于上述代码的使用,每次测试图像时,只用修改倒数第5行的fromfile参数,然后直接运行便可执行目标检测。

下面给出目标检测的效果,虽然人检测了出来,但是自行车没有被检测到,还有将猫错误识别成狗的:

深度学习(三)——tiny YOLO算法实现实时目标检测(tensorflow实现)_sed_07

目前来看,虽然识别精度不高,但是主要对象还是能够识别出来的。

五、分析

1.tiny YOLO目前是需要下载别人训练好的文件进行实验,如何训练还有待于进一步学习。

2.tiny YOLO目前的识别精度不是很高,不过识别速度很快。另外对于一些具有重叠部分的对象,其识别效果可能会比较差。

 

 

作者:柒月