One integer number x is called "Mountain Number" if:

(1) x>0 and x is an integer;

(2) Assume x=a[0]a[1]...a[len-2]a[len-1](0≤a[i]≤9, a[0] is positive). Any a[2i+1] is larger or equal to a[2i] and a[2i+2](if exists).

For example, 111, 132, 893, 7 are "Mountain Number" while 123, 10, 76889 are not "Mountain Number".

Now you are given L and R, how many "Mountain Number" can be found between L and R (inclusive) ?

Input

The first line of the input contains an integer T (T≤100), indicating the number of test cases.

Then T cases, for any case, only two integers L and R (1≤L≤R≤1,000,000,000).

Output

For each test case, output the number of "Mountain Number" between L and R in a single line.

Sample Input


3
1 10
1 100
1 1000


Sample Output


9
54
384

 

题意:

如果一个>0的整数x,满足a[2*i+1] >= a[2*i]和a[2*i+2],则这个数为Mountain Number。

给出L, R,求区间[L, R]有多少个Mountain Number。

思路:

数位DP,判断当前是偶数位还是奇数位(从0开始),

如果是偶数位,那么它要比前一个数的值小,

如果是奇数位,那么它要比前一个数的值大。

不明白为什么开long  long 就答案错误

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long ll;
int a[30];
int dp[30][15][15];
int dfs(int pos,int pre,int sta,bool limit){

if(pos<0){
return 1;
}
if(!limit&&dp[pos][pre][sta]!=-1)
return dp[pos][pre][sta];
int up=limit?a[pos]:9;
int tmp=0;
for(int i=0;i<=up;i++)
{
if(sta && i<=pre) tmp+=dfs(pos-1,i,0,limit && i==up);
if(!sta && i>=pre) tmp+=dfs(pos-1,i,1,limit && i==up);
}
if(!limit)
dp[pos][pre][sta]=tmp;
return tmp;
}

int solve(int x)
{
memset(a,0,sizeof(a));
int pos=0;
while(x)
{
a[pos++]=x%10;
x/=10;
}
return dfs(pos-1,9,1,1);
}
int main()
{

memset(dp,-1,sizeof(dp));
int n,m;
int T;
cin>>T;
while(T--)
{
scanf("%d%d",&n,&m);
printf("%d\n",solve(m)-solve(n-1));
}
return 0;
}