代码模板来自《算法竞赛进阶指南》强烈推荐,原理讲的很好

tarjan算法求无向图(可有重边)的桥、边双连通分量并缩点

///tarjan算法求无向图(可有重边)的桥、边双连通分量并缩点
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int SIZE = 100010;
int head[SIZE], ver[SIZE * 2], Next[SIZE * 2];
///head[i]=x表示以i起点的数组下标,ver[x]表示以i起点的终点编号
///next[x]=y下一个表示以i起点的数组下标 ,ver[y]表示另一个以i起点的终点编号
int dfn[SIZE], low[SIZE], c[SIZE];
///dfn表示时间戳
///low表示追溯值,c[x]表示结点x属于边连通分量的编号
int n, m, tot, num, dcc, tc;
bool bridge[SIZE * 2]; ///是否是桥
int hc[SIZE], vc[SIZE * 2], nc[SIZE * 2];
///与上面未缩点表示含义一样,只不过把e——dcc看成一个结点
void add(int x, int y) {
ver[++tot] = y, Next[tot] = head[x], head[x] = tot;
}

void add_c(int x, int y) {
vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
}

void tarjan(int x, int in_edge) {
dfn[x] = low[x] = ++num;
for (int i = head[x]; i; i = Next[i]) {///遍历每一个结点
int y = ver[i];
if (!dfn[y]) {
tarjan(y, i);
low[x] = min(low[x], low[y]);
if (low[y] > dfn[x]) ///找到桥
bridge[i] = bridge[i ^ 1] = true;
}
else if (i != (in_edge ^ 1)) ///利用异或性质解决重边
///防止x结点到父亲结点
low[x] = min(low[x], dfn[y]);
}
}

void dfs(int x) {
c[x] = dcc;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if (c[y] || bridge[i]) continue;
dfs(y);
}
}

int main() {
cin >> n >> m;
tot = 1;
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d%d", &x, &y);
add(x, y), add(y, x);
}

for (int i = 1; i <= n; i++)
if (!dfn[i])
tarjan(i, 0);

for (int i = 2; i < tot; i += 2)
if (bridge[i])
printf("%d %d\n", ver[i ^ 1], ver[i]);

for (int i = 1; i <= n; i++)
if (!c[i]) {
++dcc;
dfs(i);
}
printf("There are %d e-DCCs.\n", dcc);
for (int i = 1; i <= n; i++)
printf("%d belongs to DCC %d.\n", i, c[i]);
///缩点
tc = 1;
for (int i = 2; i <= tot; i++) {
int x = ver[i ^ 1], y = ver[i];
if (c[x] == c[y]) continue;
add_c(c[x], c[y]);
}
printf("缩点之后的森林,点数 %d,边数 %d(可能有重边)\n", dcc, tc / 2);
for (int i = 2; i < tc; i += 2)
printf("%d %d\n", vc[i ^ 1], vc[i]);
}

tarjan算法求无向图的割点、点双连通分量并缩点

// tarjan算法求无向图的割点、点双连通分量并缩点
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int SIZE = 100010;
int head[SIZE], ver[SIZE * 2], Next[SIZE*2];
///head[i]=x表示以i起点的数组下标,ver[x]表示以i起点的终点编号
///next[x]=y下一个表示以i起点的数组下标 ,ver[y]表示另一个以i起点的终点编号
int dfn[SIZE], low[SIZE], stack[SIZE], new_id[SIZE], c[SIZE];
///dfn表示时间戳
///low表示追溯值,dcc[x]表示结点x属于点连通分量的编号
int n, m, tot, num, root, top, cnt, tc;
bool cut[SIZE];
vector<int> dcc[SIZE];
int hc[SIZE], vc[SIZE * 2], nc[SIZE * 2];
///与上面未缩点表示含义一样,只不过把v——dcc看成一个结点
void add(int x, int y) {
ver[++tot] = y, Next[tot] = head[x], head[x] = tot;
}

void add_c(int x, int y) {
vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
}

void tarjan(int x) {

dfn[x] = low[x] = ++num;
stack[++top] = x;
if (x == root && head[x] == 0) { // 孤立点
dcc[++cnt].push_back(x);
return;
}
int flag = 0;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];//子节点
if (!dfn[y]) {
tarjan(y);
low[x] = min(low[x], low[y]);
if (low[y] >= dfn[x]) {
flag++;
if (x != root || flag > 1) ///除了孤立结点,双连通分量至少为2
cut[x] = true;
cnt++;
int z;
do {
z = stack[top--];
dcc[cnt].push_back(z);
} while (z != y);
dcc[cnt].push_back(x);
}
}
else low[x] = min(low[x], dfn[y]);
}
}

int main() {
cin >> n >> m;
tot = 1;
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d%d", &x, &y);
if (x == y) continue;
add(x, y), add(y, x);
}
for (int i = 1; i <= n; i++)
if (!dfn[i]) root = i, tarjan(i);
for (int i = 1; i <= n; i++)
if (cut[i]) printf("%d ", i);
puts("are cut-vertexes");
for (int i = 1; i <= cnt; i++) {
printf("v-DCC #%d:", i);
for (int j = 0; j < dcc[i].size(); j++)
printf(" %d", dcc[i][j]);
puts("");
}
// 给每个割点一个新的编号(编号从cnt+1开始)
num = cnt;
for (int i = 1; i <= n; i++)
if (cut[i]) new_id[i] = ++num;
// 建新图,从每个v-DCC到它包含的所有割点连边
tc = 1;
for (int i = 1; i <= cnt; i++)
for (int j = 0; j < dcc[i].size(); j++) {
int x = dcc[i][j];
if (cut[x]) {
add_c(i, new_id[x]);
add_c(new_id[x], i);
}
else c[x] = i; // 除割点外,其它点仅属于1个v-DCC
}
printf("缩点之后的森林,点数 %d,边数 %d\n", num, tc / 2);
printf("编号 1~%d 的为原图的v-DCC,编号 >%d 的为原图割点\n", cnt, cnt);
for (int i = 2; i < tc; i += 2)
printf("%d %d\n", vc[i ^ 1], vc[i]);
}