1、案例
2、残差图(Residual Plots)
我们可以用残差图来估计观察或预测到的误差error(残差residuals)与随机误差(stochastic error)是否一致。用一个丢骰子的例子最好理解了。当你丢出去一个六面的骰子时,你不应该能够预测得到哪面点数向上。然而,你却可以评估在一系列投掷后,正面向上的数字是否遵循一个随机模式,你自己心中就会想象出一个随机散布的残差图。如果,有人背着你对骰子做了点手脚,让六点更频繁的出现向上,这时你心中的残差图看上去就似乎有规律可循,从而不得不修改心中的模型,让你狐疑骰子一定有问题。
相同的原则也适用于回归模型。你不应该能够预测任何给定的观察或预测结果的错误(或者说差别)。你需要确定残差是否与随机误差相互呈现一致性,就像丢骰子一样,残差若整体呈现“很古怪”的模式,你就需要回头修改你的回归模型了。上面“古怪”究竟怎么看呢?看下文。
https://zhuanlan.zhihu.com/p/20700731
3、回归值与残差的残差图编辑
为检验建立的多元线性回归模型是否合适,可以通过回归值与残差的散点图来检验。其方法是画出回归值与普通残差的散点图,或者画出回归值与标准残差的散点图,其图形可能会出现下面三种情况(如图1所示):
图1(a)
图1(b)
对于图1(a)的情况,不论回归值的大小,而残差(或)具有相同的分布,并满足模型的各假设条件;对于图1(b)的情况,表示回归值的大小与残差的波动大小有关系,即等方差性的假设有问题;对于图1©,表示线性模型不合适的样本,可能有异常值存在。
对于图1(a),如果大部分点都落在中间(b)部分,而只有少数几个点落在外边,则这些点对应的样本,可能有异常值存在。
图1(c)