Python 代码实现高性能异构物理模拟系统
音频预处理模块
使用CPU进行音频的加载、预处理和特征提取。
import numpy as np
import librosa
def preprocess_audio(file_path):
# 使用CPU进行音频加载和预处理
y, sr = librosa.load(file_path, sr=None)
# 提取梅尔频谱特征
mel_spectrogram = librosa.feature.melspectrogram(y, sr=sr, n_mels=128, fmax=8000)
log_mel_spectrogram = librosa.power_to_db(mel_spectrogram, ref=np.max)
return log_mel_spectrogram, sr
特征处理模块
使用GPU进行特征处理和加速计算。
import cupy as cp
def process_features(features):
# 使用GPU进行特征处理和加速计算
features_gpu = cp.asarray(features)
# 归一化处理
mean = cp.mean(features_gpu, axis=1, keepdims=True)
std = cp.std(features_gpu, axis=1, keepdims=True)
normalized_features = (features_gpu - mean) / std
return cp.asnumpy(normalized_features)
语音识别模块
使用深度学习模型在GPU/TPU上进行语音识别。
import torch
from deepspeech import Model
def load_model(model_path, device):
# 加载预训练的语音识别模型到GPU/TPU上
model = Model(model_path)
model.to(device)
return model
def recognize_speech(model, features, device):
# 使用模型在GPU/TPU上进行语音识别
features_tensor = torch.tensor(features, dtype=torch.float32).unsqueeze(0).to(device)
with torch.no_grad():
output = model(features_tensor)
return output
结果后处理模块
使用CPU进行结果的后处理和展示。
import numpy as np
def decode_output(output):
# 将模型输出解码为文本
decoded_text = output.cpu().numpy().argmax(axis=2)[0]
text = ''.join([chr(c) for c in decoded_text])
return text
主函数
def main(audio_file_path, model_path):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 1. 音频预处理
features, sr = preprocess_audio(audio_file_path)
# 2. 特征处理
processed_features = process_features(features)
# 3. 加载语音识别模型
model = load_model(model_path, device)
# 4. 进行语音识别
output = recognize_speech(model, processed_features, device)
# 5. 结果后处理
recognized_text = decode_output(output)
print(f"Recognized Text: {recognized_text}")
if __name__ == "__main__":
audio_file_path = "path/to/audio/file.wav"
model_path = "path/to/deepspeech/model"
main(audio_file_path, model_path)
通过这种模块化设计,系统可以高效地利用异构计算资源,实现高性能的语音识别和处理。不同模块之间的接口清晰,便于维护和扩展。
C++ 代码实现高性能异构物理模拟系统
音频预处理模块
使用CPU进行音频的加载、预处理和特征提取。
#include <sndfile.hh>
#include <fftw3.h>
#include <vector>
#include <cmath>
#include <iostream>
std::vector<std::vector<double>> preprocess_audio(const std::string& file_path, int& sample_rate) {
SndfileHandle file(file_path);
sample_rate = file.samplerate();
int num_frames = file.frames();
int num_channels = file.channels();
std::vector<double> audio_data(num_frames * num_channels);
file.read(audio_data.data(), num_frames * num_channels);
// Convert to mono if necessary
if (num_channels > 1) {
for (int i = 0; i < num_frames; ++i) {
audio_data[i] = 0.5 * (audio_data[i * num_channels] + audio_data[i * num_channels + 1]);
}
audio_data.resize(num_frames);
}
// FFT and mel-spectrogram computation (simplified example)
int n_fft = 2048;
int hop_length = 512;
int n_mels = 128;
int num_windows = (num_frames - n_fft) / hop_length + 1;
std::vector<std::vector<double>> mel_spectrogram(n_mels, std::vector<double>(num_windows, 0.0));
// Perform FFT and calculate mel-spectrogram here (simplified example)
// ...
return mel_spectrogram;
}
特征处理模块
使用GPU进行特征处理和加速计算。
#include <cuda_runtime.h>
#include <vector>
#include <iostream>
__global__ void normalize_features(double* features, double* mean, double* std, int rows, int cols) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < rows * cols) {
int row = idx / cols;
features[idx] = (features[idx] - mean[row]) / std[row];
}
}
std::vector<std::vector<double>> process_features(const std::vector<std::vector<double>>& features) {
int rows = features.size();
int cols = features[0].size();
std::vector<double> features_flat(rows * cols);
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < cols; ++j) {
features_flat[i * cols + j] = features[i][j];
}
}
double* d_features;
cudaMalloc(&d_features, rows * cols * sizeof(double));
cudaMemcpy(d_features, features_flat.data(), rows * cols * sizeof(double), cudaMemcpyHostToDevice);
double* d_mean;
double* d_std;
cudaMalloc(&d_mean, rows * sizeof(double));
cudaMalloc(&d_std, rows * sizeof(double));
// Calculate mean and std here (simplified example)
// ...
normalize_features<<<(rows * cols + 255) / 256, 256>>>(d_features, d_mean, d_std, rows, cols);
cudaMemcpy(features_flat.data(), d_features, rows * cols * sizeof(double), cudaMemcpyDeviceToHost);
cudaFree(d_features);
cudaFree(d_mean);
cudaFree(d_std);
std::vector<std::vector<double>> normalized_features(rows, std::vector<double>(cols));
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < cols; ++j) {
normalized_features[i][j] = features_flat[i * cols + j];
}
}
return normalized_features;
}
语音识别模块
使用深度学习模型在GPU/TPU上进行语音识别。
#include <torch/torch.h>
#include <torch/script.h>
torch::jit::script::Module load_model(const std::string& model_path, torch::Device& device) {
torch::jit::script::Module model = torch::jit::load(model_path);
model.to(device);
return model;
}
std::vector<int64_t> recognize_speech(torch::jit::script::Module& model, const std::vector<std::vector<double>>& features, torch::Device& device) {
std::vector<int64_t> recognized_text;
torch::Tensor features_tensor = torch::from_blob(features.data(), {1, features.size(), features[0].size()}).to(device);
std::vector<torch::jit::IValue> inputs;
inputs.push_back(features_tensor);
torch::Tensor output = model.forward(inputs).toTensor();
auto output_cpu = output.cpu();
auto max_result = output_cpu.argmax(2);
auto accessor = max_result.accessor<int64_t, 2>();
for (int i = 0; i < accessor.size(1); ++i) {
recognized_text.push_back(accessor[0][i]);
}
return recognized_text;
}
结果后处理模块
使用CPU进行结果的后处理和展示。
#include <vector>
#include <string>
#include <iostream>
std::string decode_output(const std::vector<int64_t>& output) {
std::string decoded_text;
for (auto& c : output) {
decoded_text += static_cast<char>(c);
}
return decoded_text;
}
主函数
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cerr << "Usage: " << argv[0] << " <audio_file_path> <model_path>" << std::endl;
return 1;
}
std::string audio_file_path = argv[1];
std::string model_path = argv[2];
int sample_rate;
auto features = preprocess_audio(audio_file_path, sample_rate);
auto processed_features = process_features(features);
torch::Device device(torch::kCUDA);
auto model = load_model(model_path, device);
auto recognized_output = recognize_speech(model, processed_features, device);
auto recognized_text = decode_output(recognized_output);
std::cout << "Recognized Text: " << recognized_text << std::endl;
return 0;
}
通过这种模块化设计,系统可以高效地利用异构计算资源,实现高性能的语音识别和处理。不同模块之间的接口清晰,便于维护和扩展。