出自:

腾讯课堂 700多分钟干货实战Java多线程高并发高性能实战全集 , 我学习完了之后, 我给 老师在课上说的话做了个笔记,以及视频的内容,还有代码敲了一遍,然后添加了一些注释,把执行结果也整理了一下, 做了个笔记

背景

某应用程序(单台服务器,非分布式的多台服务器),这单台服务器就是你的笔记本电脑了,

并发产生100万条数据,这100w条数据是你自己产生的,假设你是架构师,如何运用多线程等基础知识将这100万条数据,快速同步(4分钟以内)到MySQL数据库?

分析百万数据快速入库的特点

1.百万数据快速入库的特点:
数据量比较大(高并发),时间很短(性能),
100万条数据如果一条一条的插入到数据库的话,时间是很慢的,所以我们采用批量的方式插入,每次分一两万, 分多个批次,并行的插入到数据库里面.
这就是用并发编程的方式去解决高并发高性能的问题
2.百万数据如何在短时间内入库?如何从架构角度优化性能?
应用程序怎么优化呢? 可以采用并发编程的形式,比如说多线程,线程池去提升性能
在数据连接池这层,我们可以调优,让它的并发量更高,提高数据库连接池的整体性能.

代码

Producer

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;

public class Producer {

public static void main(String[] args) {
Producer.createData();
}

public static void createData() {
ExecutorService pool = Executors.newFixedThreadPool(100);
final int totalPageNo = 50; //分50批次

final int pageSize = 20000; //每页大小是2万条
//共10w条数据,每页5000条数据,20个线程
final long start = System.currentTimeMillis();
final AtomicInteger atomicInt = new AtomicInteger();
for (int currentPageNo = 0; currentPageNo < totalPageNo; currentPageNo++) {
final int finalCurrentPageNo = currentPageNo;

Runnable run = new Runnable() {

@Override
public void run() {
List userList = new ArrayList<>();
for (int i = 1; i <= pageSize; i++) {
int id = i + finalCurrentPageNo * pageSize;
User user = new User();
user.setId(id);
user.setName("huanglaoxie:" + id);
userList.add(user);
}

atomicInt.addAndGet(UserBatchHandler.batchSave(userList, Thread.currentThread().getName()));
//入库的数据达到一百万条的时候就会有个统计.
if (atomicInt.get() == (totalPageNo * pageSize)) {
//如果有一百万的时候.就会在这里有个结果
System.out.println("同步数据到db,它已经花费 " + ((System.currentTimeMillis() - start) / 1000) + " 秒");
}

}
};
try {
Thread.sleep(5);
} catch (InterruptedException e) {

e.printStackTrace();
}
pool.execute(run);
}

}

}

User

import java.sql.Timestamp;

public class User {
private int id;
private String name;
private Timestamp createdTime;
private Timestamp updatedTime;

public int getId() {
return id;
}

public void setId(int id) {
this.id = id;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public Timestamp getCreatedTime() {
return createdTime;
}

public void setCreatedTime(Timestamp createdTime) {
this.createdTime = createdTime;
}

public Timestamp getUpdatedTime() {
return updatedTime;
}

public void setUpdatedTime(Timestamp updatedTime) {
this.updatedTime = updatedTime;
}
}

UserBatchHandler

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.util.List;

public class UserBatchHandler {


public static int batchSave(List userList, String threadName) {
String insertSql ="INSERT INTO user(id,name,createdTime,updatedTime) VALUES(?,?,sysdate(),sysdate())";
//取得发送sql语句的对象
PreparedStatement pst = null;
User user;
int[] count = new int[0];
Connection conn = null;
try {
conn= DataSourceUtils.getConnection();
pst = conn.prepareStatement(insertSql);

long start=System.currentTimeMillis();
if(null!=userList&&userList.size()>0){
for(int i=0;i<userList.size();i++){
user= (User) userList.get(i);
pst.setInt(1,user.getId());
pst.setString(2,user.getName());
//加入批处理
pst.addBatch();
}

count= pst.executeBatch();
System.out.println(count.length);
System.out.println(" threadName为"+threadName+", sync data to db, it has spent " +(System.currentTimeMillis()-start)+" ms");
}
} catch (SQLException e) {
e.printStackTrace();
}finally {
//4. 释放资源
DataSourceUtils.close(conn, pst);
}

//获取到数据更新的行数
return count.length;
}
}

DataSourceUtils

import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

public class DataSourceUtils {

public static void main(String[] args){
Connection conn= DataSourceUtils.getConnection();
System.out.println("conn is : "+conn);
}

//创建一个成员变量
private static DataSource ds;

/**
* 加载的代码写在静态代码块中
*/
static {
try {
Properties info = new Properties();
//加载类路径下,即src目录下的druid.properties这个文件
info.load(DataSourceUtils.class.getResourceAsStream("/druid.properties"));

//读取属性文件创建连接池
ds = DruidDataSourceFactory.createDataSource(info);
} catch (Exception e) {
e.printStackTrace();
}
}


/**
* 得到数据源
*/
public static DataSource getDataSource() {
return ds;
}

/**
* 得到连接对象
*/
public static Connection getConnection() {
try {
return ds.getConnection();
} catch (SQLException e) {
throw new RuntimeException(e);
}
}


/**
* 释放资源
*/
public static void close(Connection conn, Statement stmt, ResultSet rs) {
if (rs!=null) {
try {
rs.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
if (stmt!=null) {
try {
stmt.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
if (conn!=null) {
try {
conn.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
}


public static void close(Connection conn, Statement stmt) {
close(conn, stmt, null);
}


}

druid.properties

# 配置连接池的参数
initialSize=50
maxActive=200
maxWait=600000
minIdle=5



driverClassName=com.mysql.jdbc.Driver
url=jdbc:mysql://zjj101:3306/test?useUnicode=true&characterEncoding=utf8&serverTimezone=UTC&useSSL=false
username=root
password=root

sql脚本

CREATE TABLE `test`.`user` (
`id` INT NOT NULL,
`name` VARCHAR(45) NULL,
`createdTime` timestamp NULL,
`updatedTime` timestamp NULL,
PRIMARY KEY (`id`))
COMMENT = '用户测试表';

ALTER TABLE `test`.`user`
ADD INDEX `index` (`id` ASC);


SELECT count(*) FROM test.user;
# delete from test.user;
SELECT * FROM test.user order by id desc;

操作说明:

  1. 执行sql脚本
    2.执行Producer类即可

其它优化:

池技术为什么能提升性能?

连接池:
tomcat连接池,数据库连接池等等,通过复用连接来减少创建和释放连接的时间来提升性能.
线程池:
线程池和连接池也是一样的,通过复用连接来减少创建和释放连接的时间来提升性能.

druid数据库连接池性能调优

# 配置连接池的参数
initialSize=50
# 连接池的最大数据库连接数。设为0表示无限制。
maxActive=200
# 最大建立连接等待时间。如果超过此时间将接到异常。设为-1表示无限制。
maxWait=600000
# 连接池中的最小空闲连接数,Druid会定时扫描连接池的连接,如果空闲的连接数大于该值,则关闭多余的连接,反之则创建更多的连接以满足最小连接数要求。
minIdle=5

MySQL的核心参数优化

配置 “my.cnf” 文件里面的innodb_thread_concurrency 的配置,这个是调整线程的并发数 ,配置完了别忘了重启MySQL服务

当 innodb_thread_concurrency=12

执行程序结果:
我测试一下,第一次是 79秒 第二次88秒 第三次92秒, 不知道为什么 一次比一次多了.

当innodb_thread_concurrency=32的时候
我测试了一下第一次是67秒 ,第二次是62秒

另外,其它参数也可以修改:
innodb_buffer_pool_size 参数
max_allowed_packet 参数配置

代码Git地址

​https://gitee.com/zjj19941/mutil-thread.git​

看case1