1.原子性

原子性:即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。

2.可见性

可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。

3.有序性

有序性:即程序执行的顺序按照代码的先后顺序执行。

Volatile(内存可见性)的介绍:

1.volatile关键字的两层语义

  一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:

  1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。即线程每次获取volatile变量的值都是最新的。

  2)禁止进行指令重排序。

4.volatile的原理和实现机制

  前面讲述了源于volatile关键字的一些使用,下面我们来探讨一下volatile到底如何保证可见性和禁止指令重排序的。

  下面这段话摘自《深入理解Java虚拟机》:

  “观察加入volatile关键字和没有加入volatile关键字时所生成的汇编代码发现,加入volatile关键字时,会多出一个lock前缀指令”

  lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),内存屏障会提供3个功能:

  1)它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;即在执行到内存屏障这句指令时,在它前面的操作已经全部完成;

  2)它会强制将对缓存的修改操作立即写入主存;

  3)如果是写操作,它会导致其他CPU中对应的缓存行无效。

那么Volatile是如何来保证可见性的呢?在x86处理器下通过工具获取JIT编译器生成的汇编指令来看看对Volatile进行写操作CPU会做什么事情。

Java代码:

instance = new Singleton();//instance是volatile变量

汇编代码:

0x01a3de1d: movb $0×0,0×1104800(%esi);0x01a3de24: lock addl $0×0,(%esp);

有volatile变量修饰的共享变量进行写操作的时候会多第二行汇编代码,通过查IA-32架构软件开发者手册可知,lock前缀的指令在多核处理器下会引发了两件事情。

  • 将当前处理器缓存行的数据会写回到系统内存。
  • 这个写回内存的操作会引起在其他CPU里缓存了该内存地址的数据无效。

处理器为了提高处理速度,不直接和内存进行通讯,而是先将系统内存的数据读到内部缓存(L1,L2或其他)后再进行操作,但操作完之后不知道何时会写到内存,如果对声明了Volatile变量进行写操作,JVM就会向处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写回到系统内存。但是就算写回到内存,如果其他处理器缓存的值还是旧的,再执行计算操作就会有问题,所以在多处理器下,为了保证各个处理器的缓存是一致的,就会实现缓存一致性协议,每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了,当处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置成无效状态,当处理器要对这个数据进行修改操作的时候,会强制重新从系统内存里把数据读到处理器缓存里。

这两件事情在IA-32软件开发者架构手册的第三册的多处理器管理章节(第八章)中有详细阐述。

Lock前缀指令会引起处理器缓存回写到内存。Lock前缀指令导致在执行指令期间,声言处理器的 LOCK# 信号。在多处理器环境中,LOCK# 信号确保在声言该信号期间,处理器可以独占使用任何共享内存。(因为它会锁住总线,导致其他CPU不能访问总线,不能访问总线就意味着不能访问系统内存),但是在最近的处理器里,LOCK#信号一般不锁总线,而是锁缓存,毕竟锁总线开销比较大。在8.1.4章节有详细说明锁定操作对处理器缓存的影响,对于Intel486和Pentium处理器,在锁操作时,总是在总线上声言LOCK#信号。但在P6和最近的处理器中,如果访问的内存区域已经缓存在处理器内部,则不会声言LOCK#信号。相反地,它会锁定这块内存区域的缓存并回写到内存,并使用缓存一致性机制来确保修改的原子性,此操作被称为“缓存锁定”,缓存一致性机制会阻止同时修改被两个以上处理器缓存的内存区域数据

一个处理器的缓存回写到内存会导致其他处理器的缓存无效。IA-32处理器和Intel 64处理器使用MESI(修改,独占,共享,无效)控制协议去维护内部缓存和其他处理器缓存的一致性。在多核处理器系统中进行操作的时候,IA-32 和Intel 64处理器能嗅探其他处理器访问系统内存和它们的内部缓存。它们使用嗅探技术保证它的内部缓存,系统内存和其他处理器的缓存的数据在总线上保持一致。例如在Pentium和P6 family处理器中,如果通过嗅探一个处理器来检测其他处理器打算写内存地址,而这个地址当前处理共享状态,那么正在嗅探的处理器将无效它的缓存行,在下次访问相同内存地址时,强制执行缓存行填充。

如何保证内存可见性?

在java虚拟机的内存模型中,有主内存和工作内存的概念,每个线程对应一个工作内存,并共享主内存的数据,下面看看操作普通变量和volatile变量有什么不同:

1、对于普通变量:读操作会优先读取工作内存的数据,如果工作内存中不存在,则从主内存中拷贝一份数据到工作内存中;写操作只会修改工作内存的副本数据,这种情况下,其它线程就无法读取变量的最新值。

2、对于volatile变量,读操作时JMM会把工作内存中对应的值设为无效,要求线程从主内存中读取数据;写操作时JMM会把工作内存中对应的数据刷新到主内存中,这种情况下,其它线程就可以读取变量的最新值。

volatile变量的内存可见性是基于内存屏障(Memory Barrier)实现的,什么是内存屏障?内存屏障,又称内存栅栏,是一个CPU指令。在程序运行时,为了提高执行性能,编译器和处理器会对指令进行重排序,JMM为了保证在不同的编译器和CPU上有相同的结果,通过插入特定类型的内存屏障来禁止特定类型的编译器重排序和处理器重排序,插入一条内存屏障会告诉编译器和CPU:不管什么指令都不能和这条Memory Barrier指令重排序。

这段文字显得有点苍白无力,不如来段简明的代码:

class Singleton {
    private volatile static Singleton instance;
    private int a;
    private int b;
    private int b;
    public static Singleton getInstance() {
        if (instance == null) {
            syschronized(Singleton.class) {
                if (instance == null) {
                    a = 1;  // 1
                     b = 2;  // 2
                    instance = new Singleton();  // 3
                    c = a + b;  // 4
                }
            }
        }
        return instance;
    } 
}

1、如果变量instance没有volatile修饰,语句1、2、3可以随意的进行重排序执行,即指令执行过程可能是3214或1324。
2、如果是volatile修饰的变量instance,会在语句3的前后各插入一个内存屏障。

通过观察volatile变量和普通变量所生成的汇编代码可以发现,操作volatile变量会多出一个lock前缀指令:

Java代码:
instance = new Singleton();

汇编代码:
0x01a3de1d: movb $0x0,0x1104800(%esi);
0x01a3de24: **lock** addl $0x0,(%esp);

这个lock前缀指令相当于上述的内存屏障,提供了以下保证:
1、将当前CPU缓存行的数据写回到主内存;
2、这个写回内存的操作会导致在其它CPU里缓存了该内存地址的数据无效。

CPU为了提高处理性能,并不直接和内存进行通信,而是将内存的数据读取到内部缓存(L1,L2)再进行操作,但操作完并不能确定何时写回到内存,如果对volatile变量进行写操作,当CPU执行到Lock前缀指令时,会将这个变量所在缓存行的数据写回到内存,不过还是存在一个问题,就算内存的数据是最新的,其它CPU缓存的还是旧值,所以为了保证各个CPU的缓存一致性,每个CPU通过嗅探在总线上传播的数据来检查自己缓存的数据有效性,当发现自己缓存行对应的内存地址的数据被修改,就会将该缓存行设置成无效状态,当CPU读取该变量时,发现所在的缓存行被设置为无效,就会重新从内存中读取数据到缓存中。