1. 用机器翻译任务带你看Attention机制的计算
单独地去讲Attention机制会有些抽象,也有些枯燥,所以我们不妨以机器翻译任务为例,通过讲解Attention机制在机器翻译任务中的应用方式,来了解Attention机制的使用。
什么是机器翻译任务?以中译英为例,机器翻译是将一串中文语句翻译为对应的英文语句,如图1所示。
图1 机器翻译示例图
图1展示了一种经典的机器翻译结构Seq-to-Seq,并且向其中添加了Attention计算。Seq-to-Seq结构包含两个部分:Encoder和Decoder。其中Encoder用于将中文语句进行编码,这些编码后续将提供给Decoder进行使用;Decoder将根据Encoder的数据进行解码。我们还是以图1为例详细解释一下Decoder的解码过程。
更明确的讲,图1展示的是生成单词"machine"时的计算方式。首先将前一个时刻的输出状态 q2q2 和Encoder的输出 h=[h1,h2,h3,h4]h=[h1,h2,h3,h4] 进行Attention计算,得到一个当前时刻的 contextcontext ,用公式可以这样组织:
\[\begin{array}{*{20}{l}}
{[{a_1},{a_2},{a_3},{a_4}]}&{ = softmax([s({q_2},{h_1}),s({q_2},{h_2}),s({q_2},{h_3}),s({q_2},{h_4})])}\\
{context}&{ = \sum\limits_{i = 1}^4 {{a_i}} \cdot {h_i}}
\end{array}\]
我们来解释一下,这里的 s(qi,hj)s(qi,hj) 表示注意力打分函数,它是个标量,其大小描述了当前时刻在这些Encoder的结果上的关注程度,这个函数在后边会展开讨论。然后用softmax对这个结果进行归一化,最后使用加权评价获得当前时刻的上下文向量 contextcontext。这个contextcontext可以解释为:截止到当前已经有了"I love",在此基础上下一个时刻应该更加关注源中文语句的那些内容。这就是关于Attention机制的一个完整计算。
最后,将这个contextcontext和上个时刻的输出"love"进行融合作为当前时刻RNN单元的输入。
图1中采用了继续融合上一步的输出结果,例如上述描述中融合了"love",在有些实现中,并没有融入这个上一步的输出,默认 q2q2 中已经携带了"love"的信息,这也是合理的。
2. 注意力机制的正式引入
前边我们通过机器翻译任务介绍了Attention机制的整体计算。但是还有点小尾巴没有展开,就是那个注意力打分函数的计算,现在我们将来讨论这个事情。但在讲这个函数之前,我们先来对上边的Attention机制的计算做个总结,图2详细地描述了Attention机制的计算原理。
图2 Attention机制图
假设现在我们要对一组输入 H=[h1,h2,h3,...,hn]H=[h1,h2,h3,...,hn]使用Attention机制计算重要的内容,这里往往需要一个查询向量 qq(这个向量往往和你做的任务有关,比如机器翻译中用到的那个 q2q2 ) ,然后通过一个打分函数计算查询向量 qq 和每个输入 hihi 之间的相关性,得出一个分数。接下来使用softmax对这些分数进行归一化,归一化后的结果便是查询向量 qq在各个输入 hihi上的注意力分布 a=[a1,a2,a3,...,an]a=[a1,a2,a3,...,an],其中每一项数值和原始的输入H=[h1,h2,h3,...,hn]H=[h1,h2,h3,...,hn]一一对应。以 aiai 为例,相关计算公式如下:
\[{a_i} = softmax(s({h_i},q)) = \frac{{exp(s({h_i},q))}}{{\sum\limits_{j = 1}^n e xp(s({h_j},q))}}\]
最后根据这些注意力分布可以去有选择性的从输入信息 HH 中提取信息,这里比较常用的信息提取方式,是一种"软性"的信息提取(图2展示的就是一种"软性"注意力),即根据注意力分布对输入信息进行加权求和,最终的这个结果 contextcontext 体现了模型当前应该关注的内容:
\[context = \sum\limits_{i = 1}^n {{a_i}} \cdot {h_i}\]
现在我们来解决之前一直没有展开的小尾巴-打分函数,它可以使用以下几种方式来计算:
- 加性模型: \[s(h,q) = {v^T}tanh(Wh + Uq)\]
- 点积模型: \[s(h,q) = {h^T}q\]
- 缩放点积模型: \[s(h,q) = \frac{{{h^T}q}}{{\sqrt D }}\]
- 双线性模型: \[s(h,q) = {h^T}Wq\]
以上公式中的参数 WW、UU和vv均是可学习的参数矩阵或向量,DD为输入向量的维度。下边我们来分析一下这些分数计算方式的差别。
加性模型引入了可学习的参数,将查询向量 qq 和原始输入向量 hh 映射到不同的向量空间后进行计算打分,显然相较于加性模型,点积模型具有更好的计算效率。
另外,当输入向量的维度比较高的时候,点积模型通常有比较大的方差,从而导致Softmax函数的梯度会比较小。因此缩放点积模型通过除以一个平方根项来平滑分数数值,也相当于平滑最终的注意力分布,缓解这个问题。
最后,双线性模型可以重塑为 \[s({h_i},q) = {h^T}Wq = {h^T}({U^T}V)q = {(Uh)^T}(Vq)\]
,即分别对查询向量 qq 和原始输入向量 hh进行线性变换之后,再计算点积。相比点积模型,双线性模型在计算相似度时引入了非对称性。