题目:

剑指 Offer 10- II. 青蛙跳台阶问题
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:2
示例 2:

输入:n = 7
输出:21
示例 3:

输入:n = 0
输出:1

动态规划:

class Solution {
/**
1. 大数相乘,大数的排列组合等为什么要取模
1000000007是一个质数(素数),对质数取余能最大程度避免结果冲突/重复
int32位的最大值为2147483647,所以对于int32位来说1000000007足够大。
int64位的最大值为2^63-1,用最大值模1000000007的结果求平方,不会在int64中溢出。
所以在大数相乘问题中,因为(a∗b)%c=((a%c)∗(b%c))%c,所以相乘时两边都对1000000007取模,再保存在int64里面不会溢出。
2. 这道题为什么要取模,取模前后的值不就变了吗?
确实:取模前 f(43) = 701408733, f(44) = 1134903170, f(45) = 1836311903, 但是 f(46) > 2147483647结果就溢出了。

_____,取模后 f(43) = 701408733, f(44) = 134903163 , f(45) = 836311896, f(46) = 971215059没有溢出。

取模之后能够计算更多的情况,如 f(46)

这道题的测试答案与取模后的结果一致。

总结一下,这道题要模1000000007的根本原因是标准答案模了1000000007。不过大数情况下为了防止溢出,模1000000007是通用做法,原因见第一点。
*/
public int numWays(int n) {
if(n <= 1) return 1;
int dp[] = new int[n+1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2;i < n+1;i++){
dp[i] = (dp[i-1]+dp[i-2]) % 1000000007;
}
return dp[n];
}
}