一,概述

这几天一直在看《Android开发艺术探索》,对于我这个Android还没有学多久的人,说实话难度还是有大。其中Android消息机制这一章,看了半天,总算流程大致走了一遍,虽说不是都弄明白了,但是感觉收获还是不小。首先借用别人的一张Handler消息机制流程图(http://www.jianshu.com/p/c3459c13deff

android 消息通知 息屏通知_构造方法

Android消息机制主要就是指Handler运行机制,所附带的MessageQueue和Looper的工作过程,接下来将从这三方面一一介绍。

二,Handler

相信在做开发时,Handler经常会被使用,他是Android消息机制的上层接口,打交道的机会自然不会少。它的使用过程就是将一个任务切换到Handler所在线程中去,而刚开始很多初学者,都会认为Handler只能在主线程中创建,然后在子线程中执行耗时任务,发送消息通知Handler更新UI。其实不然,首先看Handler的构造方法,Handler的构造方法有多种重载,通常我们在主线程中构建的Handler通常会跳到这个构造方法

public Handler(Callback callback, boolean async) {
        。。。
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        。。。。
    }

在这个构造方法中我们可以看见如果mLooper为null,就会抛出Can’t create handler inside thread that has not called Looper.prepare()异常。从这里我们就可以得出一个结论如果一个线程中Looper为null,就会报错。那为什么主线程可以直接实例化Handler?来来,容贫道一一道来,首先看ActivityThread的main方法,

public static void main(String[] args) {
        。。。。

        Looper.prepareMainLooper();

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();

        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

是不是很熟悉main方法,这不是我们学java天天写的主函数吗?好吧,它就是主线程的入口函数,接下来可以看到Looper.prepareMainLooper(),打开prepareMainLooper()方法我们看见如下:

public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

上面两个方法主要就做了两件事:
1 .实例化了一个Looper,注入给sThreadLocal
2 .myLooper()赋给sMainLooper

至于ThreadLocal以后再说,暂且不讨论,大家可以将它理解为一个数据存储类,且每个线程只有一个存储变量副本。loop()后面在介绍Looper()再介绍

从上面可知主线程在初始化时就实例化了Looper,所以,主线程中可以直接实例化Handler()。从上面可以知道,如果我们想实例化Handler,就必须先有Looper,故,Handler在子线程中也可以创建。那么我们该如何在子线程中创建Handler了,下面给出例子:

new Thread(){
            @Override
            public void run() {
                //为当前线程创建一个Looper
                Looper.prepare();
                handler = new Handler(){
                    @Override
                    public void handleMessage(Message msg) {
                    }
                };
                handler.sendEmptyMessageDelayed(0, 1000);
                //开启消息循环
                Looper.loop();
            }
        }.start();

好了,构造方法讲完了,接下来就是消息的发送,我们一般可以通过两种方法发送消息。

1.send….. 一般在handMessage中处理消息
2.post….. 一般在runable中处理消息

post….底层也是调用send…..发送消息,典型执行过程如下

//1.
public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }

//2.
public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
//3.
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

//4.
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

可以看到消息最终通过enqueueMessage投递到消息队列queue,其中msg.target = this就是指的消息处理者自己,后面Looper中会使用,这里先介绍下。

三,MessageQueue

MessageQueue的中文翻译就是消息队列,顾名思义,它的内部提供了一组消息,以队列的形式对外提供插入和删除操作。虽然叫消息队列,但它的内部是通过单链表的形式提供插入和删除操作。这里插入和删除是enqueueMessag和next,其中enqueueMessag往消息队列底部插入一条消息,next()则是取出消息,并将取出的消息移除回收掉,且next是一个阻塞试的死循环机制,只要有消息插入,将进行next取出。下面大概看下源代码

boolean enqueueMessage(Message msg, long when) {
。。。
      synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

主要做了单链表的插入,代码细节就不多看了,接下来看下next()

Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

这段代码可以看出, 它是一个无限循环的消息,会无限的检测是否有消息。当有消息到来时,next会取出消息,并从队列里面取出。

四,Looper

首先看下其构造方法

private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}

在构造方法中实例化了MessageQueue。通常MessageQueue只负责消息的插入和读取,不负责消息的处理,而Looper是一个无限的消息循环,它负责从消息队列中取出消息并发给Handler处理,看下刚刚没有介绍的loop()

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            if (traceTag != 0) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            try {
                msg.target.dispatchMessage(msg);
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
......
    }

可以看出它是一个无限的消息循环,Message msg = queue.next()程序会阻塞在这里,如果没有消息到来,当looper检测到消息时会取出msg,然后执行msg.target.dispatchMessage(msg); 刚刚我们说到msg.target就是handler所以最后执行的是handler的dispatchMessage()方法,看下它的实现:

public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

它的执行过程可以用张图概述下:

android 消息通知 息屏通知_主线程_02

(稍微有点丑,将就下)

可以看出,平常我们直接实例化Handler(),就只会调用最后的handleMessage(msg),在handler中handleMessage是一个空实现,需要我们在调用时手动实现。而另外一个CallBack是一个内部接口,它的实现如下

/**
     * Callback interface you can use when instantiating a Handler to avoid
     * having to implement your own subclass of Handler.
     *
     * @param msg A {@link android.os.Message Message} object
     * @return True if no further handling is desired
     */
    public interface Callback {
        public boolean handleMessage(Message msg);
    }

那么它的意义是什么? 从接口上面注释就可以看见,它的实现是为了不需要去派生Handler的子类,日常生活中通常是直接实例化Handler,并重写handleMessage,但是有时候,可以这样写

private Handler handler = new Handler(new Handler.Callback() {
        @Override
        public boolean handleMessage(Message msg) {

            return false;
        }
    });

返回值就是一个Boolean型变量,从那个图我们可以看见返回true就是自己消费了,handler的handleMessage不需要处理,false,就是要调用系统的handleMessage处理,这就是它的执行过程。

总结

好了,到了这里,它的基本过程以及涉及的三个部分Handler,MessageQueue,Looper都介绍了一遍,稍微再总结下吧

1 .Handler负责在子线程中发消息,消息会到MessageQueue底部。
2 .MessageQueue负责将消息加到队列,以及取出消息并回收掉。
3 .Looper负责检测MessageQueue是否有新消息,如果有就取出消息,然后发给消息发送者处理,此时线程已经从子线程切换到了另一个线程(通常是主线程)。

整个过程大致就是这,看到结果还是蛮容易理解的,不过内部执行过程确实很复杂(发个消息也不容易啊)! 好了,就到这里了!!!!!