背景

谈到RPC,就避免不了序列化的话题。

gRPC默认的序列化方式是protobuf,原因很简单,因为两者都是google发明的,哈哈。

在当初Google开源protobuf时,很多人就期待是否能把RPC的实现也一起开源出来。没想到最终出来的是gRPC,终于补全了这一块。

跨语言的序列化方案

事实上的跨语言序列化方案只有三个: protobuf, thrift, json。

  • json体积太大,并且缺少类型信息,实际上只用在RESTful接口上,并没有看到RPC框架会默认选json做序列化的。

国内一些大公司的使用情况:

  • protobuf ,腾迅,百度等
  • thrift,小米,美团等
  • hessian, 阿里用的是自己维护的版本,有js/cpp的实现,因为阿里主用java,更多是历史原因。

序列化里的类型信息

序列化就是把对象转换为二进制数据,反序列化就把二进制数据转换为对象。

各种序列化库层出不穷,其中有一个重要的区别:类型信息存放在哪

可以分为三种:

  1. 不保存类型信息
    典型的是各种json序列化库,优点是灵活,缺点是使用的双方都要知道类型是什么。当然有一些json库会提供一些扩展,偷偷把类型信息插入到json里。
  2. 类型信息保存到序列化结果里
    比如java自带的序列化,hessian等。缺点是类型信息冗余。比如RPC里每一个request都要带上类型。因此有一种常见的RPC优化手段就是两端协商之后,后续的请求不需要再带上类型信息。
  3. 在生成代码里带上类型信息
    通常是在IDL文件里写好package和类名,生成的代码直接就有了类型信息。比如protobuf, thrift。缺点是需要生成代码,双方都要知道IDL文件。

类型信息看起来是一个小事,但在安全上却会出大问题,后面会讨论。

实际使用中序列化有哪些问题

这里讨论的是没有IDL定义的序列化方案,比如java自带的序列化,hessian, 各种json库。

  • 大小莫名增加,比如用户不小心向map里put了大对象。
  • 对象之间互相引用,用户根本不清楚序列化到底会产生什么结果,可能新加一个field就不小心被序列化了
  • enum类新增加的不能识别,当两端的类版本不一致时就会出错
  • 哪些字段应该跳过序列化 ,不同的库都有不同的 @Ignore ,没有通用的方案
  • 很容易把一些奇怪的类传过来,然后对端报ClassNotFoundException
  • 新版本jdk新增加的类不支持,需要序列化库不断升级,如果没人维护就悲剧了
  • 库本身的代码质量不高,或者API设计不好容易出错,比如kryo

gRPC是protobuf的一个插件

以gRPC官方的Demo为例:

package helloworld;

// The greeting service definition.
service Greeter {
  // Sends a greeting
  rpc SayHello (HelloRequest) returns (HelloReply) {}
}

// The request message containing the user's name.
message HelloRequest {
  string name = 1;
}

// The response message containing the greetings
message HelloReply {
  string message = 1;
}

可以看到rpc的定义也是写在proto文件里的。实际上gRPC是protobuf的一个扩展,通过扩展生成gRPC相关的代码

protobuf并不是完美解决方案

在protobuf出来以后,也不断出现新的方案。比如

protobuf的一些缺点:

  • 缺少map/set的支持(proto3支持map)
  • Varint编码会消耗CPU
  • 会影响CPU缓存,比如比较大的int32从4字节用Varint表示是5字节就不对齐了
  • 解码时要复制一份内存,不能做原地内存引用的优化
    protobuf在google 2008年公开的,内部使用自然更早。当时带宽还比较昂贵,现在人们对速度的关注胜过带宽了。

protobuf需要生成代码的确有点麻烦,所以会有基于java annotation的方案:

同样thrift有:

序列化库的速度问题

总有序列化库跳出来说自己速度最快,其实很多时候猫腻很多。事有反常必有妖。

常见的加快速度的手段有:

  • threadlocal的byte array
    当序列化一个大对象后,threadlocal的byte array增大,然后不能及时释放。如果线程池越大,则占用的内存会越多。fastjson采用一种动态缩小的处理办法,但不能从根本解决这个问题。
  • 用asm的方式生成代码,避免反射调用getter/setter
    这样会导致库代码复杂,容易有bug,并且会占用内存。
  • 循环引用用ID标识对象
    kryo要求注册类型的顺序是统一的,因为它要为类型分配ID,然后在处理循环引用时,把同样的对象直接用ID来标识,这样子可以大大减少体积。
    但是用户在使用时,调用代码的顺序可能是不确定的,注册上去的ID也可能不一样,那么反序列化就会有问题。
    kryo的API还不是线程安全的,很容易踩坑。

在benchmark里protobuf的速度在前列,并不是最快。但是protobuf用生成代码的方式保证了内存占用,时间占用不会出问题。

序列化被人忽视的安全性问题

序列化漏洞危害很大

  1. 序列化漏洞通常比较严重,容易造成任意代码执行
  2. 序列化漏洞在很多语言里都会有,比如Python Pickle序列化漏洞。

很多程序员不理解为什么反序列化可以造成任意代码执行。

反序列化漏洞到底是怎么工作的呢?很难直接描述清楚,这些漏洞都有很精巧的设计,把多个地方的代码串联起来。可以参考这个demo,跑起来调试下就可以有直观的印象:

这里有两个生成java序列化漏洞代码的工具:

常见的库怎样防止反序列化漏洞

下面来看下常见的序列化方案是怎么防止反序列化漏洞的:

  1. Java Serialization
  1. jackson-databind
  1. fastjson
  • fastjson通过一个denyList来过滤掉一些危险类的package,参见ParserConfig.java
  • fastjson在新版本里denyList改为通过hashcode来隐藏掉package信息,但通过这个DenyTest5可以知道还是过滤掉常见危险类的package
  • fastjson在新版本里默认把autoType的功能禁止掉了

所以总结下来,要么白名单,要么黑名单。当然黑名单机制不能及时更新,业务方得不断升jar包,非常蛋疼。白名单是比较彻底的解决方案。

为什么protobuf没有序列化漏洞

这些序列化漏洞的根本原因是:没有控制序列化的类型范围

为什么在protobuf里并没有这些反序列化问题?

  • protobuf在IDL里定义好了package范围
  • protobuf的代码都是自动生成的,怎么处理二进制数据都是固定的

protobuf把一切都框住了,少了灵活性,自然就少漏洞。

总结

  • 应该重视反序列化漏洞,毕竟Oracle都不得不考虑把java序列化废弃了
  • 序列化漏洞的根本原因是:没有控制序列化的类型范围
  • 防止序列化漏洞,最好是使用白名单
  • protobuf通过IDL生成代码,严格控制了类型范围
  • protobuf不是完美的方案,但是作为跨语言的序列化事实方案之一,IDL生成代码比较麻烦也不是啥大问题

链接