1.扫描线扫描x轴,线段树维护y轴。

2.坐标+1,线段树是从1开始维护。然后让边长--,这样就能包含边上的点了。

3.为了保证点在正方形内:在x轴上利用差分的思想,在x出Add(val),在x+r(已经-1了)处Add(-val);在y轴上利用线段树维护1~5001这个区间,在y~y+r上Add(val)。

题解博客大家都是口胡感觉难以讲清这个事情,这篇博客虽然没解释但代码逻辑不错,看懂的。

 

  1 #pragma comment(linker, "/STACK:1024000000,1024000000")
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <cstdlib>
  5 #include <cmath>
  6 #include <ctime>
  7 #include <cctype>
  8 #include <climits>
  9 #include <iostream>
 10 #include <iomanip>
 11 #include <algorithm>
 12 #include <string>
 13 #include <sstream>
 14 #include <stack>
 15 #include <queue>
 16 #include <set>
 17 #include <map>
 18 #include <vector>
 19 #include <list>
 20 #include <fstream>
 21 #include <bitset>
 22 #define init(a, b) memset(a, b, sizeof(a))
 23 #define rep(i, a, b) for (int i = a; i <= b; i++)
 24 #define irep(i, a, b) for (int i = a; i >= b; i--)
 25 #define ls(p)    p << 1
 26 #define rs(p)    p << 1 | 1
 27 using namespace std;
 28 
 29 typedef double db;
 30 typedef long long ll;
 31 typedef unsigned long long ull;
 32 typedef pair<int, int> P;
 33 const int inf = 0x3f3f3f3f;
 34 const ll INF = 1e18;
 35 
 36 template <typename T> void read(T &x) {
 37     x = 0;
 38     int s = 1, c = getchar();
 39     for (; !isdigit(c); c = getchar())
 40         if (c == '-')    s = -1;
 41     for (; isdigit(c); c = getchar())
 42         x = x * 10 + c - 48;
 43     x *= s;
 44 }
 45 
 46 template <typename T> void write(T x) {
 47     if (x < 0)    x = -x, putchar('-');
 48     if (x > 9)    write(x / 10);
 49     putchar(x % 10 + '0');
 50 }
 51 
 52 template <typename T> void writeln(T x) {
 53     write(x);
 54     puts("");
 55 }
 56 
 57 const int maxn = 1e4 + 5, M = 5001;
 58 int n, r, cnt;
 59 struct Seg {
 60     int l, r, mx, tag;
 61 }t[(M + 5) << 2];
 62 struct node {
 63     int x, y1, y2, val;
 64 }c[maxn << 1];
 65 
 66 void build(int l, int r, int p) {
 67     t[p].l = l, t[p].r = r;
 68     if (l == r) {
 69         t[p].mx = t[p].tag = 0;
 70         return;
 71     }
 72     int mid = (l + r) >> 1;
 73     build(l, mid, ls(p));
 74     build(mid + 1, r, rs(p));
 75 }
 76 
 77 void push_down(int p) {
 78     if (t[p].tag) {
 79         int tag = t[p].tag;
 80         t[ls(p)].mx += tag;
 81         t[rs(p)].mx += tag;
 82         t[ls(p)].tag += tag;
 83         t[rs(p)].tag += tag;
 84         t[p].tag = 0;
 85     }
 86 }
 87 
 88 void Add(int l, int r, int p, int k) {
 89     if (l <= t[p].l && t[p].r <= r) {
 90         t[p].tag += k;
 91         t[p].mx += k;
 92         return;
 93     }
 94     push_down(p);
 95     int mid = (t[p].l + t[p].r) >> 1;
 96     if (l <= mid)    Add(l, r, ls(p), k);
 97     if (mid < r)    Add(l, r, rs(p), k);
 98     t[p].mx = max(t[ls(p)].mx, t[rs(p)].mx);
 99 }
100 
101 int Query(int l, int r, int p) {
102     if (l <= t[p].l && t[p].r <= r) {
103         return t[p].mx;
104     }
105     push_down(p);
106     int ret = 0;
107     int mid = (t[p].l + t[p].r) >> 1;
108     if (l <= mid)    ret = max(ret, Query(l, mid, ls(p)));
109     if (mid < r)    ret = max(ret, Query(mid + 1, r, rs(p)));
110     return ret;
111 }
112 
113 bool cmp(node a, node b) {
114     if (a.x != b.x)    return a.x < b.x;
115     return a.val > b.val;
116 }
117 
118 int solve() {
119     int ans = 0;
120     build(1, M, 1);
121     rep(i, 1, n) {
122         int x, y, z;
123         read(x), read(y), read(z);
124         c[++cnt] = {x + 1, y + 1, y + r, z};
125         c[++cnt] = {x + r, y + 1, y + r, -z};
126     }
127     sort(c + 1, c + 1 + cnt, cmp);
128 
129     for (int i = 1, j, k; i <= cnt; i = j) {
130         int tmp = c[i].x;
131         for (j = i; j <= cnt && c[j].x == tmp; j++);
132         for (k = i; k < j && c[k].val > 0; k++) {
133             Add(c[k].y1, c[k].y2, 1, c[k].val);
134         }
135         ans = max(ans, Query(1, M, 1));
136         for (; k < j; k++) {
137             Add(c[k].y1, c[k].y2, 1, c[k].val);
138         }
139     }
140     return ans;
141 }
142 
143 int main() {
144     read(n), read(r);
145     writeln(solve());
146     return 0;
147 }