之前说过要用PyTorch的方法重新实现一遍对于UCF101的处理。


# pytorch 为 c h w 一般常规为 h w c


二 具体目标

按照trainlist(testllist)中的列表去确定要用哪些数据集。
对于每一个视频随机取连续的16帧
每一帧都减去RGB平均值
对于每帧先将大小修改到(182,242)
然后对修改过大小的帧随机截取(160,160)
每次返回视频表示: x[batch_size,16,3,160,160], 标签值: y[batch_size]

三 基本实现思路
鉴于我们现在要处理的数据集既不是PyTorch直接提供的,又不符合最通用的ImageFolder存储格式,我们就乖乖一步步地实现。

跟例程中最大的区别在于我们组要处理的视频,而不是单张图像,那么就把这一步工作放到__getitem__里面去完成。
剩下的变换功能放到transform里面去完成。

具体的步骤如下所示:

首先,定义数据集的类UCF101,这个类要继承dataset这个抽象类,并实现__init__ , __len__以及__getitem__这几个函数

init:完成infolist的读入及处理还有其他的初始化工作。

len:返回数据集大小

getitem:返回单个视频随机连续16帧的读取和返回
其他函数用于支持以上的功能。

然后,实现用于特定图像预处理的功能,并封装成类。

减去RGB的平均值
大小调整成(182,242)
随机截取成(160,160)
转换成Tensor
将它们进行组合成(transform)

transform作为上面UCF101类的参数传入,并得到实例化UCF101得到my_UCF101对象。
最后,将my_UCF101作为torch.utils.data.DataLoader类的形参,并根据需求设置自己是否需要打乱顺序,批大小…

四 完整代码
原理的部分不懂的话还是建议回去看看这篇哇:PyTorch入门学习(七):数据加载与处理
这里就不再赘述,直接上代码了。
from future import print_function, division
import os
import torch
import pandas as pd
from skimage import io, transform
import numpy as np
import random
import torch
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils

Ignore warnings

import warnings
warnings.filterwarnings(“ignore”)
plt.ion() # interactive mode

class ClipSubstractMean(object):
def init(self, b=104, g=117, r=123):
self.means = np.array((r, g, b))

def call(self, sample):
video_x,video_label=sample[‘video_x’],sample[‘video_label’]
new_video_x=video_x - self.means
return {‘video_x’: new_video_x, ‘video_label’: video_label}

class Rescale(object):
“”"Rescale the image in a sample to a given size.

Args:
    output_size (tuple or int): Desired output size. If tuple, output is
        matched to output_size. If int, smaller of image edges is matched
        to output_size keeping aspect ratio the same.
"""

def __init__(self, output_size=(182,242)):
    assert isinstance(output_size, (int, tuple))
    self.output_size = output_size

def __call__(self, sample):
    video_x,video_label=sample['video_x'],sample['video_label']

    h, w = video_x.shape[1],video_x[2]
    if isinstance(self.output_size, int):
        if h > w:
            new_h, new_w = self.output_size * h / w, self.output_size
        else:
            new_h, new_w = self.output_size, self.output_size * w / h
    else:
        new_h, new_w = self.output_size

    new_h, new_w = int(new_h), int(new_w)
    new_video_x=np.zeros((16,new_h,new_w,3))
    for i in range(16):
        image=video_x[i,:,:,:]
        img = transform.resize(image, (new_h, new_w))
        new_video_x[i,:,:,:]=img

    return {'video_x': new_video_x, 'video_label': video_label}

class RandomCrop(object):
“”"Crop randomly the image in a sample.

Args:
    output_size (tuple or int): Desired output size. If int, square crop
        is made.
"""

def __init__(self, output_size=(160,160)):
    assert isinstance(output_size, (int, tuple))
    if isinstance(output_size, int):
        self.output_size = (output_size, output_size)
    else:
        assert len(output_size) == 2
        self.output_size = output_size

def __call__(self, sample):
    video_x, video_label = sample['video_x'], sample['video_label']

    h, w = video_x.shape[1],video_x.shape[2]
    new_h, new_w = self.output_size

    top = np.random.randint(0, h - new_h)
    left = np.random.randint(0, w - new_w)
     
    new_video_x=np.zeros((16,new_h,new_w,3))
    for i in range(16):
        image=video_x[i,:,:,:]
        image = image[top: top + new_h,left: left + new_w]
        new_video_x[i,:,:,:]=image

    return {'video_x': new_video_x, 'video_label': video_label}

class ToTensor(object):
“”“Convert ndarrays in sample to Tensors.”""

def __call__(self, sample):
    video_x, video_label = sample['video_x'], sample['video_label']

    # swap color axis because
    # numpy image: batch_size x H x W x C
    # torch image: batch_size x C X H X W
    video_x = video_x.transpose((0, 3, 1, 2))
    video_x=np.array(video_x)
    video_label = [video_label]
    return {'video_x':torch.from_numpy(video_x),'video_label':torch.FloatTensor(video_label)}

class UCF101(Dataset):
“”“UCF101 Landmarks dataset.”""

def __init__(self, info_list, root_dir, transform=None):
    """
    Args:
        info_list (string): Path to the info list file with annotations.
        root_dir (string): Directory with all the video frames.
        transform (callable, optional): Optional transform to be applied
            on a sample.
    """
    self.landmarks_frame = pd.read_csv(info_list,delimiter=' ', header=None)
    self.root_dir = root_dir
    self.transform = transform
        
def __len__(self):
    return len(self.landmarks_frame)

# get (16,240,320,3)
def __getitem__(self, idx):
    video_path = os.path.join(self.root_dir,self.landmarks_frame.iloc[idx, 0])
    video_label=self.landmarks_frame.iloc[idx,1]
    video_x=self.get_single_video_x(video_path)
    sample = {'video_x':video_x, 'video_label':video_label}

    if self.transform:
        sample = self.transform(sample)
    return sample


def get_single_video_x(self,video_path):
    slash_rows=video_path.split('.')
    dir_name=slash_rows[0]
    video_jpgs_path=os.path.join(self.root_dir,dir_name)
    # get the random 16 frame
    data=pd.read_csv(os.path.join(video_jpgs_path,'n_frames'),delimiter=' ',header=None)
    frame_count=data[0][0]
    video_x=np.zeros((16,240,320,3))

    image_start=random.randint(1,frame_count-17)
    image_id=image_start
    for i in range(16):
        s="%05d" % image_id
        image_name='image_'+s+'.jpg'
        image_path=os.path.join(video_jpgs_path,image_name)
        tmp_image = io.imread(image_path)
        video_x[i,:,:,:]=tmp_image
        image_id+=1
    return video_x

if name==‘main’:
#usage
root_list=’/home/hl/Desktop/lovelyqian/CV_Learning/UCF101_jpg/’
info_list=’/home/hl/Desktop/lovelyqian/CV_Learning/UCF101_TrainTestlist/trainlist01.txt’
myUCF101=UCF101(info_list,root_list,transform=transforms.Compose([ClipSubstractMean(),Rescale(),RandomCrop(),ToTensor()]))

dataloader=DataLoader(myUCF101,batch_size=8,shuffle=True,num_workers=8)
for i_batch,sample_batched in enumerate(dataloader):
    print (i_batch,sample_batched['video_x'].size(),sample_batched['video_label'].size())

整个代码不管是在逻辑清晰度还是代码行数上都比之前的改进了很多,所以还是要多多学习大佬的框架,当然能自己实现一遍也是被有韵味的啦。