缺失值的识别与处理;

异常值与重复值的处理

正文:

缺失值的识别与处理

导读:

   

> x <- c(1,2,3,NA,NA,4)
> mean(x)
[1] NA
> sum(x)
[1] NA
> mean(x,na.rm = TRUE)
[1] 2.5
> sum(x,na.rm = TRUE)
[1] 10
> is.na(x)
[1] FALSE FALSE FALSE  TRUE  TRUE FALSE
> sum(is.na(x))
[1] 2
n  用[! ]去掉缺失值
u  示例:
> x[!is.na(x)]
[1] 1 2 3 4
> iris_na <- iris
> for (i in 1:4) {
+   iris_na[sample(1:nrow(iris),5),i] = NA
+ }
>
> sapply(iris_na[,1:4],function(x)sum(is.na(x)))
我 是 中 国
 5  5  5  5
> sapply(iris_na[,1:4],function(x)which(is.na(x))) #which返回的是位置
      我  是 中  国
[1,]  10  11  6  28
[2,]  60  52 21 108
[3,]  92  54 32 111
[4,] 108 113 79 124
[5,] 144 136 83 135
u  psych扩展包里describe()函数,用于描述数据集的基本统计值
u  计算缺失值的比例:
l  示例:
> sapply(iris_na[,1:4],function(x)sum(is.na(x)/nrow(iris_na)))
        我         是         中         国
0.03333333 0.03333333 0.03333333 0.03333333
n  缺失值对于回归分析的影响
u  示例:
u  lm(Sepal.length~Sepal.Width,data = iris_na,na.action = na.omit) #在进行回归分析是也要去除缺失值,用na.action,但其默认也是na.action=na.omit
n  缺失值得填补:一般采用中数和中位数,具体如下
u  示例1:
mean_value <- sapply(iris_na[,1:4],mean,na.rm = TRUE)
 
for (i in 1:4) {
  iris_na[is.na(iris_na[,i],i)] = mean_value[i]
}
u  示例2:
> cancer[sample(1:1000,90),2] <- NA   #生成缺失值
> mean_value <- tapply(cancer$sur_days,list(cancer$type,cancer$treatment),mean,na.rm = TRUE)
> mean_value     #求均值
         chemo     sugr
colon 523.6489 539.9329
liver 530.1656 576.6056
lung  547.7427 553.1241
> for (i in 1:3){
+   for (j in 1:2){
+     cancer$sur_days[is.na(cancer$sur_days) & cancer$type == rownames(mean_value)[i]
+                     & cancer$treatment == colnames(mean_value)[j]] =mean_value[i,j]
+   }
+ }     #填补缺失值
> summary(cancer)
       id            sur_days         type     treatment 
1.  Min.   :   1.0   Min.   : 100.0   colon:320   chemo:497 
 1st Qu.: 250.8   1st Qu.: 335.8   liver:330   sugr :503 
 Median : 500.5   Median : 547.7   lung :350             
 Mean   : 500.5   Mean   : 545.4                         
 3rd Qu.: 750.2   3rd Qu.: 738.5                         
1.  Max.   :1000.0   Max.   :1000.0                       
> describe(cancer)
           vars    n   mean     sd median trimmed    mad min  max range
id            1 1000 500.50 288.82 500.50  500.50 370.65   1 1000   999
sur_days      2 1000 545.45 247.96 547.74  544.41 300.23 100 1000   900
type*         3 1000   2.03   0.82   2.00    2.04   1.48   1    3     2
treatment*    4 1000   1.50   0.50   2.00    1.50   0.00   1    2     1
            skew kurtosis   se
id          0.00    -1.20 9.13
sur_days    0.03    -1.00 7.84
type*      -0.06    -1.51 0.03
treatment* -0.01    -2.00 0.02
n  用R包对缺失值进行填补
u  安装mlbench包
l  示例:
install.packages('mlbench')
library(mlbench)
data('BostonHousing')
 
original_data <- BostonHousing
 
set.seed(2018)
BostonHousing[sample(1:nrow(BostonHousing),80),'rad'] <- NA  #在rad列生成缺失值
BostonHousing[sample(1:nrow(BostonHousing),80),'ptratio'] <- NA   #在ptratio列生成缺失值
u  安装mice包,利用里面的md.pattern()函数查看缺失值得模式。md.pattern(BostonHousing数据集名称) ,0代表缺失,1表示不缺失,最后一行表示缺失总数。
u  安装Hmisc包,利用其中的impute()插补:参数设置:需要插补的对象,拟插补的参数
n  示例:
im_mean <- impute(BostonHousing$ptratio,mean)  #mean可以换成median或者固定的数字
BostonHousing$ptratio <- NULL
BostonHousing$im_mean <- im_mean
u  用mice包(链式方程多元插值)进行缺失值填补,基本思想为利用一种模型,把缺失值的变量作为因变量,把其他不缺失的变量作为自变量进行回归分析,以预测缺失值
n  示例:
mice_mod <- mice(BostonHousing[,!names(BostonHousing)%in% 'medv'],method ='rf')     #rf 随机森林
mice_output <- complete(mice_mod)   #complete函数,完整显示
anyNA(mice_output)  #是否还有NA值
FALSE
n  示例2:查看预测的精度
actuals <- original_data$rad[is.na(BostonHousing$rad)]  #查看原始值
predicts <- mice_out[is.na(BostonHousing$rad),'rad']  #查看预测值
mean(actuals != predicts)   #原始值不等于预测值的比例
0.3  #预测精度为70%
u  VIM包:可以对缺失值进行可视化;也可以对数据进行插补
n  数据可视化:
u  示例:
md.pattern(airquality)
aggr_plot <- aggr(airquality,col = c('red','green'),numbers = TRUE,sortVars = T,labels = names(airquality),cex.axis = 0.7,gap = 3)
 
marginplot(airquality[1:2]
n  用线性回归模型进行插补:
n  示例:
data(sleep)
head(sleep)
  BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
1 6654.000   5712.0   NA    NA   3.3 38.6  645    3   5      3
2    1.000      6.6  6.3   2.0   8.3  4.5   42    3   1      3
3    3.385     44.5   NA    NA  12.5 14.0   60    1   1      1
4    0.920      5.7   NA    NA  16.5   NA   25    5   2      3
5 2547.000   4603.0  2.1   1.8   3.9 69.0  624    3   5      4
6   10.550    179.5  9.1   0.7   9.8 27.0  180    4   4      4
sleepIm <- regressionImp(Sleep + Gest + Span + Dream + NonD ~ BodyWgt+BrainWgt,data = sleep)   # 第一个为缺失值变量,~后面为不包含缺失值的变量,data为数据集名,也可以再考虑family 参数,可选auto
head(sleepIm)    #不含有缺失值了,TRUE代表该位置原来为缺失值。
BodyWgt BrainWgt       NonD      Dream Sleep     Span Gest Pred Exp Danger
1 6654.000   5712.0 -11.732867 -0.6897314   3.3 38.60000  645    3   5      3
2    1.000      6.6   6.300000  2.0000000   8.3  4.50000   42    3   1      3
3    3.385     44.5   8.987353  2.0132372  12.5 14.00000   60    1   1      1
4    0.920      5.7   9.017324  2.0148478  16.5 15.50179   25    5   2      3
5 2547.000   4603.0   2.100000  1.8000000   3.9 69.00000  624    3   5      4
6   10.550    179.5   9.100000  0.7000000   9.8 27.00000  180    4   4      4
  Sleep_imp Gest_imp Span_imp Dream_imp NonD_imp
1     FALSE    FALSE    FALSE      TRUE     TRUE
2     FALSE    FALSE    FALSE     FALSE    FALSE
3     FALSE    FALSE    FALSE      TRUE     TRUE
4     FALSE    FALSE     TRUE      TRUE     TRUE
5     FALSE    FALSE    FALSE     FALSE    FALSE
6     FALSE    FALSE    FALSE     FALSE    FALSE
 
  异常值与重复值的处理
n  异常值的处理:原则:根据数据的实际背景来判断
u  一些基础值:
> set.seed(2017)
> mmhg <- sample(60:250,1000, replace = TRUE)
> range(mmhg)
[1]  60 250
> min(mmhg)
[1] 60
> max(mmhg)
[1] 250
> quantile(mmhg)  #四分位数
    0%    25%    50%    75%   100%
 60.00 104.75 154.00 199.00 250.00
> fivenum(mmhg)  #四分位数
[1]  60.0 104.5 154.0 199.0 250.0
u  自定义函数:
> outlierKD <- function(dt,var){
+   var_name <-eval(substitute(var),eval(dt))
+   tot <- sum(!is.na(var_name))
+   na1 <- sum(is.na(var_name))
+   m1 <- mean(var_name,na.rm = T)
+   par(mfrow = c(2,2),oma = c(0,0,3,0))
+   boxplot(var_name,main ='With outliers')
+   hist(var_name,main ='With outliers',xlab = NA,ylab = NA)
+   outlier <- var_name[var_name >230]
+   mo <- mean(outlier)
+   var_name <- ifelse(var_name %in% outlier, NA, var_name)
+   boxplot(var_name,main ='Without outliers')
+   hist(var_name,main ='Without outliers',xlab = NA,ylab = NA)
+   title('Outlier Check',outer = T)
+   na2 <- sum(is.na(var_name))
+   cat('Outliers identified:',na2 - na1,'\n')
+   cat('Propotion (%) of outliers:',round((na2 - na1)/ tot * 100,1),'\n')
+   cat('Mean of the outliers:',round(mo,2),'\n')
+   m2 <- mean(var_name,na.rm = T)
+   cat('Mean without removing outliers:',round(m1,2),'\n')
+   cat('Mean if we remove outliers:',round(m2,2),'\n')
+   response <- readline(prompt = 'Do you want to remove outliers
+                        and to replace with NA? [yes/no]:')
+   if (response == 'y' | response == 'yes'){
+     dt[as.character(substitute(var))] <- invisible(var_name)
+     assign(as.character(as.list(match.call())$dt),dt,envir = .GlobalEnv)
+     cat('Outliers successfully removed','\n')
+     return(invisible(dt))
+   } else{
+     cat('Nothing changed','\n')
+     return(invisible(var_name))
+   }
+ }
> set.seed(2017)
> df <- data.frame(bp = c(sample(80:250,1000,replace = T),NA,390,100))
> outlierKD(df,bp)
Outliers identified: 126
Propotion (%) of outliers: 12.6
Mean of the outliers: NA
Mean without removing outliers: 163.79
Mean if we remove outliers: 152.71
Do you want to remove outliers
                       and to replace with NA? [yes/no]:
 同时也会生成可视化的图。
n  重复值的处理:
u  unique()函数:返回值   针对向量
> x<- c(1,2,3,4,5,1,2,3)
> unique(x)
[1] 1 2 3 4 5
u  duplicated()函数:返回逻辑值T和F,可用于提取子集  针对向量
> x<- c(1,2,3,4,5,1,2,3)
> duplicated(x)
[1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
> x[duplicated(x)]  #如要返回非重复值,前面加!
[1] 1 2 3
u  anyDuplicated()函数:返回第一个重复值出现的位置   针对向量
> anyDuplicated(x)
[1] 6
u  对数据框进行重复值的处理
l  自己设置条件
library(readxl)
mydata <- read_excel('absolute path/filename.xlsx')
mydata[!(duplicated(mydata$name)& duplicated(mydata$birthday)),]
l  用函数实现:paste()函数:主要是对字符串进行操作
library(readxl)
mydata <- read_excel('absolute path/filename.xlsx')
mydata$test <- paste(mydata$name,mydata$birthday)  # 把两个变量粘在一起
newdata <- mydata[!duplicated(mydata$test),]