事件驱动型(Event-driven)

事件驱动型应用是一类具有状态的应用,它从一个或多个事件流提取数据,并根据到来的事件触发计算、状态更新或其他外部动作。比较典型的就是以kafka为代表的消息队列几乎都是事件驱动型应用。

与之不同的就是SparkStreaming微批次,如图:

Flink架构的组成部分_API


事件驱动型

Flink架构的组成部分_flink_02

流与批的世界观

批处理的特点是有界、持久、大量,非常适合需要访问全套记录才能完成的计算工作,一般用于离线统计

流处理的特点是无界、实时, 无需针对整个数据集执行操作,而是对通过系统传输的每个数据项执行操作,一般用于实时统计

在spark的世界观中,一切都是由批次组成的,离线数据是一个大批次,而实时数据是由一个一个无限的小批次组成的。

而在flink的世界观中,一切都是由组成的,离线数据是有界限的流,实时数据是一个没有界限的流,这就是所谓的有界流无界流

无界数据流:无界数据流有一个开始但是没有结束,它们不会在生成时终止并提供数据,必须连续处理无界流,也就是说必须在获取后立即处理event。对于无界数据流我们无法等待所有数据都到达,因为输入是无界的,并且在任何时间点都不会完成。处理无界数据通常要求以特定顺序(例如事件发生的顺序)获取event,以便能够推断结果完整性。

有界数据流:有界数据流有明确定义的开始和结束,可以在执行任何计算之前通过获取所有数据来处理有界流,处理有界流不需要有序获取,因为可以始终对有界数据集进行排序,有界流的处理也称为批处理

Flink架构的组成部分_流处理_03


这种以流为世界观的架构,获得的最大好处就是具有极低的延迟

分层API

Flink架构的组成部分_流处理_04

最底层级的抽象仅仅提供了有状态流,它将通过过程函数(Process Function)被嵌入到DataStream API中。底层过程函数(Process Function) 与 DataStream API 相集成,使其可以对某些特定的操作进行底层的抽象,它允许用户可以自由地处理来自一个或多个数据流的事件,并使用一致的容错的状态。除此之外,用户可以注册事件时间并处理时间回调,从而使程序可以处理复杂的计算。

实际上,大多数应用并不需要上述的底层抽象,而是针对核心API(Core APIs) 进行编程,比如DataStream API(有界或无界流数据)以及DataSet API(有界数据集)。这些API为数据处理提供了通用的构建模块,比如由用户定义的多种形式的转换(transformations),连接(joins),聚合(aggregations),窗口操作(windows)等等。

DataSet API 为有界数据集提供了额外的支持,例如循环与迭代。这些API处理的数据类型以类(classes)的形式由各自的编程语言所表示。

Table API 是以表为中心的声明式编程,其中表可能会动态变化(在表达流数据时)。Table API遵循(扩展的)关系模型:表有二维数据结构(schema)(类似于关系数据库中的表),同时API提供可比较的操作,例如select、project、join、group-by、aggregate等。Table API程序声明式地定义了什么逻辑操作应该执行,而不是准确地确定这些操作代码的看上去如何。

尽管Table API可以通过多种类型的用户自定义函数(UDF)进行扩展,其仍不如核心API更具表达能力,但是使用起来却更加简洁(代码量更少)。除此之外,Table API程序在执行之前会经过内置优化器进行优化。

你可以在表与 DataStream/DataSet 之间无缝切换,以允许程序将 Table API 与 DataStream 以及 DataSet 混合使用。

Flink提供的最高层级的抽象是 SQL 。这一层抽象在语法与表达能力上与 Table API 类似,但是是以SQL查询表达式的形式表现程序。

SQL抽象Table API交互密切,同时SQL查询可以直接在Table API定义的表上执行。

目前Flink作为批处理还不是主流,不如Spark成熟,所以DataSet使用的并不是很多。Flink Table APIFlink SQL也并不完善,大多都由各大厂商自己定制。实际上Flink作为最接近Google DataFlow模型的实现,是流批统一的观点,所以基本上使用DataStream就可以了。

Flink几大模块

 Flink Table & SQL(还没开发完)
 Flink Gelly(图计算)
 Flink CEP(复杂事件处理)