与其他编程语言相比,Python最吸引人的地方就是能够让你在短时间内用少量代码即可实现效果,比如同样一个需求,Java需要百行代码,而Python只需要十几行就可以搞定了,那么如何提升Python的运行效率呢?以下是详细的内容:

  1、多进程并行编程

  对于CPU密集型的程序,可以使用multiProcessing的Process,Pool等封装好的类,通过多进程的方式实现并行计算。但是因为进程中的通信成本比较大,对于进程之间需要大量数据交互的程序效率未必有大的提高。

  2、多线程并行编程

  对于IO密集型的程序,multiprocessing.dummy模块使用multiprocessing的接口封装threading,使得多线程编程也变得非常轻松。

  3、优化算法时间

  算法的时间复杂度对程序的执行效率影响最大,在Python中可以通过选择合适的数据结构来优化时间复杂度,如list和set查找某一个元素的时间复杂度分别是O(n)和O(1)。不同的场景有不同的优化方式,总得来说,一般有分治,分支界限,贪心,动态规划等思想。

  4、针对循环的优化

  每种编程语言都会强调需要优化循环。当使用Python的时候,你可以依靠大量的技巧使得循环运行得更快。然而,开发者经常漏掉的一个方法是:避免在一个循环中使用点操作。优化循环的关键,是要减少Python在循环内部执行的工作量,因为Python原生的解释器在那种情况下,真的会减缓执行的速度。

  5、函数选择

  在循环的时候使用xrange而不是range;使用xrange可以节省大量的系统内存,因为xrange()在序列中每次调用只产生一个整数元素。而range()将直接返回完整的元素列表,用于循环时会有不必要的开销。