高斯过程介绍
高斯过程是一种观测值出现在一个连续域的统计随机过程,简单而言,它是一系列服从正态分布的随机变量的联合分布,且该联合分布服从于多元高斯分布。
核函数是高斯过程的核心概念,决定了一个高斯过程的基本性质。核函数在高斯过程中起生成一个协方差矩阵来衡量任意两个点之间的距离,并且可以捕捉不同输入点之间的关系,将这种关系反映到后续的样本位置上,用于预测后续未知点的值。常用的核函数包括高斯核函数(径向基核函数)、常数核函数、线性核函数、Matern核函数和周期核函数等。
高斯核函数形式如下:
通过一些数据点来基于高斯过程回归进行拟合:
import numpy as np
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import ConstantKernel, RBF
# 定义目标函数
def target(x):
return np.exp(-(x - 2)**2) + np.exp(-(x - 6)**2/10) + 1/ (x**2 + 1)
# 训练和测试数据
X_train = np.array([-1, 2, 4, 5, 7]).reshape(-1, 1)
y_train = target(X_train)
X_test = np.linspace(-2, 10, 10000).reshape(-1, 1)
# 高斯过程拟合
kernel = ConstantKernel(constant_value=0.2,constant_value_bounds=(1e-4, 1e4)) *
RBF(length_scale=0.5, length_scale_bounds=(1e-4, 1e4))
gpr = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=2)
gpr.fit(X_train, y_train)
mu, cov = gpr.predict(X_test, return_cov=True)
y_test = mu.ravel()
uncertainty = 1.96 * np.sqrt(np.diag(cov))
# 绘图
plt.figure()
plt.title("l=%.1f sigma_f=%.1f" % (gpr.kernel_.k2.length_scale, gpr.kernel_.k1.constant_value))
plt.fill_between(X_test.ravel(), y_test + uncertainty, y_test - uncertainty, alpha=0.1)
plt.plot(X_test, y_test, label="predict")
plt.scatter(X_train, y_train, label="train", c="red", marker="D")
plt.legend()
自定义实现
考虑代码实现一个高斯过程回归,API 接口风格采用 sciki-learn fit-predict 风格。由于高斯过程回归是一种非参数化 (non-parametric)的模型,每次的 inference 都需要利用所有的训练数据进行计算得到结果,因此并没有一个显式的训练模型参数的过程,所以 fit 方法只需要将训练数据保存下来,实际的 inference 在 predict 方法中进行。Python 代码如下
from scipy.optimize import minimize
class GPR:
def __init__(self, optimize=True):
self.is_fit = False
self.train_X, self.train_y = None, None
self.params = {"l": 0.5, "sigma_f": 0.2}
self.optimize = optimize
def fit(self, X, y):
# store train data
self.train_X = np.asarray(X)
self.train_y = np.asarray(y)
self.is_fit = True
def predict(self, X):
if not self.is_fit:
print("GPR Model not fit yet.")
return
X = np.asarray(X)
Kff = self.kernel(self.train_X, self.train_X) # (N, N)
Kyy = self.kernel(X, X) # (k, k)
Kfy = self.kernel(self.train_X, X) # (N, k)
Kff_inv = np.linalg.inv(Kff + 1e-8 * np.eye(len(self.train_X))) # (N, N)
mu = Kfy.T.dot(Kff_inv).dot(self.train_y)
cov = Kyy - Kfy.T.dot(Kff_inv).dot(Kfy)
return mu, cov
def kernel(self, x1, x2):
dist_matrix = np.sum(x1**2, 1).reshape(-1, 1) + np.sum(x2**2, 1) - 2 * np.dot(x1, x2.T)
return self.params["sigma_f"] ** 2 * np.exp(-0.5 / self.params["l"] ** 2 * dist_matrix)
def y(x, noise_sigma=0.0):
x = np.asarray(x)
y = np.cos(x) + np.random.normal(0, noise_sigma, size=x.shape)
return y.tolist()
train_X = np.array([3, 1, 4, 5, 9]).reshape(-1, 1)
train_y = y(train_X, noise_sigma=1e-4)
test_X = np.arange(0, 10, 0.1).reshape(-1, 1)
gpr = GPR()
gpr.fit(train_X, train_y)
mu, cov = gpr.predict(test_X)
test_y = mu.ravel()
uncertainty = 1.96 * np.sqrt(np.diag(cov))
plt.figure()
plt.title("l=%.2f sigma_f=%.2f" % (gpr.params["l"], gpr.params["sigma_f"]))
plt.fill_between(test_X.ravel(), test_y + uncertainty, test_y - uncertainty, alpha=0.1)
plt.plot(test_X, test_y, label="predict")
plt.scatter(train_X, train_y, label="train", c="red", marker="x")
plt.legend()
结果如下图,红点是训练数据,蓝线是预测值,浅蓝色区域是 95% 置信区间。真实的函数是一个 cosine 函数,可以看到在训练数据点较为密集的地方,模型预测的不确定性较低,而在训练数据点比较稀疏的区域,模型预测不确定性较高。
超参数优化
上文提到高斯过程是一种非参数模型,没有训练模型参数的过程,一旦核函数、训练数据给定,则模型就被唯一地确定下来。但是核函数本身是有参数的,比如高斯核的参数 σ 和 ι,我们称为这种参数为模型的超参数(类似于 k-NN 模型中 k 的取值)。
核函数本质上决定了样本点相似性的度量方法,进行影响到了整个函数的概率分布的形状。上面的高斯过程回归的例子中使用了σ=0.2 和 ι=0.5 的超参数,我们可以选取不同的超参数看看回归出来的效果。
from scipy.optimize import minimize
class GPR:
def __init__(self, optimize=True):
self.is_fit = False
self.train_X, self.train_y = None, None
self.params = {"l": 0.5, "sigma_f": 0.2}
self.optimize = optimize
def fit(self, X, y):
# store train data
self.train_X = np.asarray(X)
self.train_y = np.asarray(y)
# hyper parameters optimization
def negative_log_likelihood_loss(params):
self.params["l"], self.params["sigma_f"] = params[0], params[1]
Kyy = self.kernel(self.train_X, self.train_X) + 1e-8 * np.eye(len(self.train_X))
loss = 0.5 * self.train_y.T.dot(np.linalg.inv(Kyy)).dot(self.train_y) + 0.5 * np.linalg.slogdet(Kyy)[1] + 0.5 * len(self.train_X) * np.log(2 * np.pi)
return loss.ravel()
if self.optimize:
res = minimize(negative_log_likelihood_loss, [self.params["l"], self.params["sigma_f"]],
bounds=((1e-4, 1e4), (1e-4, 1e4)),
method='L-BFGS-B')
self.params["l"], self.params["sigma_f"] = res.x[0], res.x[1]
self.is_fit = True
def predict(self, X):
if not self.is_fit:
print("GPR Model not fit yet.")
return
X = np.asarray(X)
Kff = self.kernel(self.train_X, self.train_X) # (N, N)
Kyy = self.kernel(X, X) # (k, k)
Kfy = self.kernel(self.train_X, X) # (N, k)
Kff_inv = np.linalg.inv(Kff + 1e-8 * np.eye(len(self.train_X))) # (N, N)
mu = Kfy.T.dot(Kff_inv).dot(self.train_y)
cov = Kyy - Kfy.T.dot(Kff_inv).dot(Kfy)
return mu, cov
def kernel(self, x1, x2):
dist_matrix = np.sum(x1**2, 1).reshape(-1, 1) + np.sum(x2**2, 1) - 2 * np.dot(x1, x2.T)
return self.params["sigma_f"] ** 2 * np.exp(-0.5 / self.params["l"] ** 2 * dist_matrix)
def y(x, noise_sigma=0.0):
x = np.asarray(x)
y = np.cos(x) + np.random.normal(0, noise_sigma, size=x.shape)
return y.tolist()
train_X = np.array([3, 1, 4, 5, 9]).reshape(-1, 1)
train_y = y(train_X, noise_sigma=1e-4)
test_X = np.arange(0, 10, 0.1).reshape(-1, 1)
gpr = GPR()
gpr.fit(train_X, train_y)
mu, cov = gpr.predict(test_X)
test_y = mu.ravel()
uncertainty = 1.96 * np.sqrt(np.diag(cov))
plt.figure()
plt.title("l=%.2f sigma_f=%.2f" % (gpr.params["l"], gpr.params["sigma_f"]))
plt.fill_between(test_X.ravel(), test_y + uncertainty, test_y - uncertainty, alpha=0.1)
plt.plot(test_X, test_y, label="predict")
plt.scatter(train_X, train_y, label="train", c="red", marker="x")
plt.legend()
sklearn实现:
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import ConstantKernel, RBF
# fit GPR
kernel = ConstantKernel(constant_value=0.2, constant_value_bounds=(1e-4, 1e4)) * RBF(length_scale=0.5, length_scale_bounds=(1e-4, 1e4))
gpr = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=2)
gpr.fit(train_X, train_y)
mu, cov = gpr.predict(test_X, return_cov=True)
test_y = mu.ravel()
uncertainty = 1.96 * np.sqrt(np.diag(cov))
# plotting
plt.figure()
plt.title("l=%.1f sigma_f=%.1f" % (gpr.kernel_.k2.length_scale, gpr.kernel_.k1.constant_value))
plt.fill_between(test_X.ravel(), test_y + uncertainty, test_y - uncertainty, alpha=0.1)
plt.plot(test_X, test_y, label="predict")
plt.scatter(train_X, train_y, label="train", c="red", marker="x")
plt.legend()
多维输入
如下是一个二维的输入
def y_2d(x, noise_sigma=0.0):
x = np.asarray(x)
y = np.sin(0.5 * np.linalg.norm(x, axis=1))
y += np.random.normal(0, noise_sigma, size=y.shape)
return y
train_X = np.random.uniform(-4, 4, (100, 2)).tolist()
train_y = y_2d(train_X, noise_sigma=1e-4)
test_d1 = np.arange(-5, 5, 0.2)
test_d2 = np.arange(-5, 5, 0.2)
test_d1, test_d2 = np.meshgrid(test_d1, test_d2)
test_X = [[d1, d2] for d1, d2 in zip(test_d1.ravel(), test_d2.ravel())]
gpr = GPR(optimize=True)
gpr.fit(train_X, train_y)
mu, cov = gpr.predict(test_X)
z = mu.reshape(test_d1.shape)
fig = plt.figure(figsize=(7, 5))
ax = Axes3D(fig)
ax.plot_surface(test_d1, test_d2, z, cmap=cm.coolwarm, linewidth=0, alpha=0.2, antialiased=False)
ax.scatter(np.asarray(train_X)[:,0], np.asarray(train_X)[:,1], train_y, c=train_y, cmap=cm.coolwarm)
ax.contourf(test_d1, test_d2, z, zdir='z', offset=0, cmap=cm.coolwarm, alpha=0.6)
ax.set_title("l=%.2f sigma_f=%.2f" % (gpr.params["l"], gpr.params["sigma_f"]))
下面是一个二维输入数据的高斯过程回归,左图是没有经过超参优化的拟合效果,右图是经过超参优化的拟合效果。
高斯过程回归的优缺点
优点
- (采用 RBF 作为协方差函数)具有平滑性质,能够拟合非线性数据
- 高斯过程回归天然支持得到模型关于预测的不确定性(置信区间),直接输出关于预测点值的概率分布
- 通过最大化边缘似然这一简洁的方式,高斯过程回归可以在不需要交叉验证的情况下给出比较好的正则化效果
缺点
- 高斯过程是一个非参数模型,每次的 inference 都需要对所有的数据点进行(矩阵求逆)。对于没有经过任何优化的高斯过程回归,n个样本点时间复杂度大概是(O)=n³,空间复杂度是 (O)=n²,在数据量大的时候高斯过程变得 intractable
- 高斯过程回归中,先验是一个高斯过程,likelihood 也是高斯的,因此得到的后验仍是高斯过程。在 likelihood不服从高斯分布的问题中(如分类),需要对得到的后验进行 approximate 使其仍为高斯过程 ;
- RBF 是最常用的协方差函数,但在实际中通常需要根据问题和数据的性质选择恰当的协方差函数