ResNet(Residual Network)是由微软亚洲研究院提出的深度卷积神经网络,它在2015年的ImageNet挑战赛上取得了第一名的好成绩。ResNet最大的特点是使用了残差学习,可以解决深度网络退化问题。
在传统的深度神经网络中,随着网络层数的增加,网络的训练误差会逐渐变得更大,导致网络性能下降。这种现象被称为网络退化问题。ResNet通过在网络中引入残差块(Residual Block)解决了这个问题。
在ResNet中,每个残差块包含两个卷积层和一个跳跃连接。跳跃连接是将输入直接连接到输出,以便信息可以直接跨层传播。因此,每个残差块可以学习到残差函数,将输入映射到期望输出的剩余映射,而不是直接将输入映射到输出。
ResNet的深度可以达到1000层以上,但由于使用了残差块,其实际参数数量比传统的深度神经网络少了很多。这使得ResNet能够在保持高准确率的同时,使用更少的计算资源。
在Python中,可以使用TensorFlow、PyTorch等深度学习框架来构建和训练ResNet模型。
案例
编写 Python 卷积神经网络 ResNet 的训练代码需要使用深度学习框架,如 TensorFlow、PyTorch、Keras 等。这里以 TensorFlow 为例,介绍一下基本的编写方法:
数据预处理:读入并预处理训练数据和测试数据,包括数据的读入、缩放、归一化等操作。
构建模型:使用 TensorFlow 的高级 API,如 Keras、tf.estimator 等,构建 ResNet 网络模型。ResNet 是一种非常深的卷积神经网络,通常使用残差块(Residual Block)来加深网络。
编译模型:对构建好的模型进行编译,指定优化器、损失函数和评价指标等。
训练模型:使用训练数据对模型进行训练,设置训练的批次大小、训练的轮数、是否启用 early stopping 等。
评估模型:使用测试数据对训练好的模型进行评估,计算模型的精度、损失等指标。
保存模型:将训练好的模型保存到本地,以便后续使用。
下面是一个使用 TensorFlow 实现 ResNet 的训练代码的简单示例:
数据预处理、构建并编译模型
在上面的代码中,首先使用Dense层创建输出层,其中输出单元数为10,激活函数为softmax,然后使用tf.keras.Model将输入层和输出层组合成一个完整的模型。接着使用compile方法来编译模型,指定优化器为Adam,损失函数为交叉熵,评估指标为准确率。最后,我们就可以使用fit方法来训练模型了。