滑动窗口计数有很多使用场景,比如说限流防止系统雪崩。相比计数实现,滑动窗口实现会更加平滑,能自动消除毛刺。
滑动窗口原理是在每次有访问进来时,先判断前N个单位时间内的总访问量是否超过了设置的阈值,并对当前时间片上的请求数+1。
上图每一个格式表示一个固定的时间(比如1s),每个格子一个计数器,要获取前3s的请求量,就是对当前时间片i ~ i-2的时间片上计数器进行累加。
这种模式的实现的方式更加契合流控的本质意义,理解较为简单。但由于访问量的不可预见性,会发生单位时间的前半段大量请求涌入,而后半段则拒绝所有请求的情况(通常,需要可以将单位时间切的足够的小来缓解);其次,很难确定这个阈值设置在多少比较合适,只能通过经验或者模拟(如压测)来进行估计,即使是压测也很难估计的准确。集群部署中每台机器的硬件参数不同,可能导致需要对每台机器的阈值设置的都不尽相同。同一台机子在不同的时间点的系统压力也不一样(比如晚上还有一些任务,或其他的一些业务操作的影响),能够承受的最大阈值也不尽相同,无法考虑的周全。
所以滑窗模式通常适用于对某一资源的保护的需求上,如对db的保护,对某一服务的调用的控制上。
代码实现思路:
每一个时间片(单位时间)就是一个独立的计数器,用以数组保存。将当前时间以某种方式(比如取模)映射到数组的一项中。每次访问先对当前时间片上的计数器+1,再计算前N个时间片的访问量总合,超过阈值则限流。
import java.util.concurrent.atomic.AtomicInteger;
public class SlidingWindow {
private AtomicInteger[] timeSlices;
/* 队列的总长度 */
private final int timeSliceSize;
/* 每个时间片的时长 */
private final long timeMillisPerSlice;
/* 窗口长度 */
private final int windowSize;
/* 当前所使用的时间片位置 */
private AtomicInteger cursor = new AtomicInteger(0);
public static enum Time {
MILLISECONDS(1),
SECONDS(1000),
MINUTES(SECONDS.getMillis() * 60),
HOURS(MINUTES.getMillis() * 60),
DAYS(HOURS.getMillis() * 24),
WEEKS(DAYS.getMillis() * 7);
private long millis;
Time(long millis) {
this.millis = millis;
}
public long getMillis() {
return millis;
}
}
public SlidingWindow(int windowSize, Time timeSlice) {
this.timeMillisPerSlice = timeSlice.millis;
this.windowSize = windowSize;
// 保证存储在至少两个window
this.timeSliceSize = windowSize * 2 + 1;
init();
}
/**
* 初始化
*/
private void init() {
AtomicInteger[] localTimeSlices = new AtomicInteger[timeSliceSize];
for (int i = 0; i < timeSliceSize; i++) {
localTimeSlices[i] = new AtomicInteger(0);
}
timeSlices = localTimeSlices;
}
private int locationIndex() {
long time = System.currentTimeMillis();
return (int) ((time / timeMillisPerSlice) % timeSliceSize);
}
/**
* <p>对时间片计数+1,并返回窗口中所有的计数总和
* <p>该方法只要调用就一定会对某个时间片进行+1
* @return
*/
public int incrementAndSum() {
int index = locationIndex();
int sum = 0;
// cursor等于index,返回true
// cursor不等于index,返回false,并会将cursor设置为index
int oldCursor = cursor.getAndSet(index);
if (oldCursor == index) {
// 在当前时间片里继续+1
sum += timeSlices[index].incrementAndGet();
} else {
//轮到新的时间片,置0,可能有其它线程也置了该值,容许
timeSlices[index].set(0);
// 清零,访问量不大时会有时间片跳跃的情况
clearBetween(oldCursor, index);
sum += timeSlices[index].incrementAndGet();
}
for (int i = 1; i < windowSize; i++) {
sum += timeSlices[(index - i + timeSliceSize) % timeSliceSize].get();
}
return sum;
}
/**
* 判断是否允许进行访问,未超过阈值的话才会对某个时间片+1
* @param threshold
* @return
*/
public boolean allow(int threshold) {
int index = locationIndex();
int sum = 0;
int oldCursor = cursor.getAndSet(index);
if (oldCursor != index) {
timeSlices[index].set(0);
clearBetween(oldCursor, index);
}
for (int i = 0; i < windowSize; i++) {
sum += timeSlices[(index - i + timeSliceSize) % timeSliceSize].get();
}
// 阈值判断
if (sum < threshold) {
// 未超过阈值才+1
timeSlices[index].incrementAndGet();
return true;
}
return false;
}
/**
* <p>将fromIndex~toIndex之间的时间片计数都清零
* <p>极端情况下,当循环队列已经走了超过1个timeSliceSize以上,这里的清零并不能如期望的进行
* @param fromIndex 不包含
* @param toIndex 不包含
*/
private void clearBetween(int fromIndex, int toIndex) {
for (int index = (fromIndex + 1) % timeSliceSize; index != toIndex; index = (index + 1) % timeSliceSize) {
timeSlices[index].set(0);
}
}
public static void main(String[] args) {
SlidingWindow window = new SlidingWindow(5, Time.MILLISECONDS);
for (int i = 0; i < 10; i++) {
System.out.println(window.allow(7));
}
}
}