Flink提供了自定义函数的基础能力,在需要满足特殊业务场景需求时,根据自身需要按需定制自己的UDF 下面将简单演示一个UDF的定义和UDF的使用过程:

(1)定义一个UDF

package com.udf;

import org.apache.flink.table.functions.ScalarFunction;

/**
* Created by lj on 2022-07-25.
*/
public class TestUDF extends ScalarFunction {
public String eval(String value) {
return value + "_udf";
}
}

(2)使用UDF

public static void main(String[] args) throws Exception {

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
DataStreamSource<String> streamSource = env.socketTextStream("127.0.0.1", 9999,"\n");
SingleOutputStreamOperator<WaterSensor> waterDS = streamSource.map(new MapFunction<String, WaterSensor>() {
@Override
public WaterSensor map(String s) throws Exception {
String[] split = s.split(",");
return new WaterSensor(split[0], Long.parseLong(split[1]), Integer.parseInt(split[2]));
}
});

// 将流转化为表
Table table = tableEnv.fromDataStream(waterDS,
$("id"),
$("ts"),
$("vc"),
$("pt").proctime());

tableEnv.createTemporaryView("EventTable", table);

/*
// 1. 直接调用自定义udf 函数
// table.select(call(myFunction.class,$("id"))).execute().print();
// 2. 先注册在使用
tableEnv.createTemporarySystemFunction("MyLength",myFunction.class);
//2.1 在使用注册的自定义函数 名称为MyLength
// table.select(call("MyLength",$("id"))).execute().print();
// 2.2 采用sql 的方式进行使用自定义函数
tableEnv.sqlQuery("select id, MyLength(id) from "+table).execute().print();
* */

tableEnv.createTemporarySystemFunction("MyLength",TestUDF.class);
Table result = tableEnv.sqlQuery(
"SELECT " +
"id as componentname, " + //window_start, window_end,
"COUNT(ts) as componentcount ,SUM(ts) as componentsum, " +
"MyLength(cast(COUNT(ts) as string)) as testudf " +
"FROM TABLE( " +
"TUMBLE( TABLE EventTable , " +
"DESCRIPTOR(pt), " +
"INTERVAL '10' SECOND)) " +
"GROUP BY id , window_start, window_end"
);

tableEnv.toRetractStream(result, Row.class).print("toRetractStream"); //缩进模式

env.execute();
}

(3)应用效果

(8)FlinkSQL自定义UDF_flinksteaming