1 简介

传统的BP神经网络收敛速度慢,以及该算法的不完备性,易陷于局部极小,全局最优无法保证能收敛到等缺点.针对BP神经网络的缺陷,该文利用遗传算法优化BP神经网络权值和阈值,使得训练了BP神经网络预测模型得到了最优解.采用遗传算法优化BP神经网络的算法,并以此结合算法来研究非线性函数拟合的问题.从实验结果表明,基于遗传算法优化的BP神经网络的非线性函数拟合具有较强的收敛性和鲁棒性,并且有了更高的预测精度.

2 部分代码

%% 双隐含层BP神经网络
%% 清空环境变量
clc
clear
%% 训练数据预测数据提取及归一化
%下载输入输出数据
load data input output
%从1到2000间随机排序
k=rand(1,2000);
[m,n]=sort(k);
%找出训练数据和预测数据
input_train=input(n(1:1900),:)';
output_train=output(n(1:1900));
input_test=input(n(1901:2000),:)';
output_test=output(n(1901:2000));
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% BP网络训练
% %初始化网络结构
net=newff(inputn,outputn,[5 5]);
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00004;
%网络训练
net=train(net,inputn,outputn);
%% BP网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
%网络预测输出
an=sim(net,inputn_test);
%网络输出反归一化
BPoutput=mapminmax('reverse',an,outputps);
%% 结果分析
figure(1)
plot(BPoutput,':og')
hold on
plot(output_test,'-*');
legend('预测输出','期望输出')
title('BP网络预测输出','fontsize',12)
ylabel('函数输出','fontsize',12)
xlabel('样本','fontsize',12)
%预测误差
error=BPoutput-output_test;
figure(2)
plot(error,'-*')
title('BP网络预测误差','fontsize',12)
ylabel('误差','fontsize',12)
xlabel('样本','fontsize',12)
figure(3)
plot((output_test-BPoutput)./BPoutput,'-*');
title('神经网络预测误差百分比')
errorsum=sum(abs(error))

3 仿真结果

bp神经网络的非线性系统建模 bp神经网络非线性拟合_遗传算法

bp神经网络的非线性系统建模 bp神经网络非线性拟合_神经网络_02

bp神经网络的非线性系统建模 bp神经网络非线性拟合_数据_03

4 参考文献

[1]王光明 王爱平. 遗传算法优化BP神经网络的非线性函数拟合研究[J]. 赤峰学院学报:自然科学版