文章目录

  • 前言
  • 一、整体目录结构
  • 二、Deep Sort代码参数解释
  • 三、代码展示
  • 总结



前言

先来看下实现效果:

yolov8 deepsort目标跟踪_yolov8 deepsort目标跟踪


上图展示了用yolov5作为检测器,Deep Sort为追踪器实现了对车流量的统计并绘制了每辆车的运行轨迹。


一、整体目录结构

下图展示了项目的整体目录结构:

yolov8 deepsort目标跟踪_python_02


其中:

deep_sort文件下为目标跟踪相关代码;

weights文件夹下存放yolov5检测模型;

demo.py针对读取的视频进行目标追踪

objdetector.py封装的一个目标检测器,对视频中的物体进行检测

objtracker.py封装了一个目标追踪器,对检测的物体进行追踪

二、Deep Sort代码参数解释

deep_sort/configs/deep_sort.yaml文件里保存了Deep Sort算法的配置参数:

yolov8 deepsort目标跟踪_目标检测_03


yolov8 deepsort目标跟踪_目标检测_04


这些参数依次的含义为:

  1. REID_CKPT:特征提取权重的目录路径
  2. MAX_DIST: 最大余弦距离,用于级联匹配,如果大于该阈值,则忽略
  3. MIN_CONFIDENCE:检测结果置信度阈值
  4. NMS_MAX_OVERLAP: 非极大抑制阈值,设置为1代表不进行抑制
  5. MAX_IOU_DISTANCE: 最大IOU阈值
  6. MAX_AGE:最大寿命,也就是经过MAX_AGE帧没有追踪到该物体,就将该轨迹变为删除态
  7. N_INIT: 最高击中次数,如果击中该次数,就由不确定态转为确定态
  8. NN_BUDGET: 最大保存特征帧数,如果超过该帧数,将进行滚动保存

三、代码展示

下面给出demo.py的代码:

import numpy as np

import objtracker
from objdetector import Detector
import cv2

VIDEO_PATH = './video/test_traffic.mp4'

if __name__ == '__main__':

    # 根据视频尺寸,填充供撞线计算使用的polygon
    width = 1920
    height = 1080
    mask_image_temp = np.zeros((height, width), dtype=np.uint8)

    # 用于记录轨迹信息
    pts = {}

    # 填充第一个撞线polygon(蓝色)
    list_pts_blue = [[204, 305], [227, 431], [605, 522], [1101, 464], [1900, 601], [1902, 495], [1125, 379], [604, 437],
                     [299, 375], [267, 289]]
    ndarray_pts_blue = np.array(list_pts_blue, np.int32)
    polygon_blue_value_1 = cv2.fillPoly(mask_image_temp, [ndarray_pts_blue], color=1)
    polygon_blue_value_1 = polygon_blue_value_1[:, :, np.newaxis]

    # 填充第二个撞线polygon(黄色)
    mask_image_temp = np.zeros((height, width), dtype=np.uint8)
    list_pts_yellow = [[181, 305], [207, 442], [603, 544], [1107, 485], [1898, 625], [1893, 701], [1101, 568],
                       [594, 637], [118, 483], [109, 303]]
    ndarray_pts_yellow = np.array(list_pts_yellow, np.int32)
    polygon_yellow_value_2 = cv2.fillPoly(mask_image_temp, [ndarray_pts_yellow], color=2)
    polygon_yellow_value_2 = polygon_yellow_value_2[:, :, np.newaxis]

    # 撞线检测用的mask,包含2个polygon,(值范围 0、1、2),供撞线计算使用
    polygon_mask_blue_and_yellow = polygon_blue_value_1 + polygon_yellow_value_2

    # 缩小尺寸,1920x1080->960x540
    polygon_mask_blue_and_yellow = cv2.resize(polygon_mask_blue_and_yellow, (width // 2, height // 2))

    # 蓝 色盘 b,g,r
    blue_color_plate = [255, 0, 0]
    # 蓝 polygon图片
    blue_image = np.array(polygon_blue_value_1 * blue_color_plate, np.uint8)

    # 黄 色盘
    yellow_color_plate = [0, 255, 255]
    # 黄 polygon图片
    yellow_image = np.array(polygon_yellow_value_2 * yellow_color_plate, np.uint8)

    # 彩色图片(值范围 0-255)
    color_polygons_image = blue_image + yellow_image

    # 缩小尺寸,1920x1080->960x540
    color_polygons_image = cv2.resize(color_polygons_image, (width // 2, height // 2))

    # list 与蓝色polygon重叠
    list_overlapping_blue_polygon = []

    # list 与黄色polygon重叠
    list_overlapping_yellow_polygon = []

    # 下行数量
    down_count = 0
    # 上行数量
    up_count = 0

    font_draw_number = cv2.FONT_HERSHEY_SIMPLEX
    draw_text_postion = (int((width / 2) * 0.01), int((height / 2) * 0.05))

    # 实例化yolov5检测器
    detector = Detector()

    # 打开视频
    capture = cv2.VideoCapture(VIDEO_PATH)

    while True:
        # 读取每帧图片
        _, im = capture.read()
        if im is None:
            break

        # 缩小尺寸,1920x1080->960x540
        im = cv2.resize(im, (width // 2, height // 2))

        list_bboxs = []
        # 更新跟踪器
        output_image_frame, list_bboxs = objtracker.update(detector, im)
        # 输出图片
        output_image_frame = cv2.add(output_image_frame, color_polygons_image)

        if len(list_bboxs) > 0:
            # ----------------------判断撞线----------------------
            for item_bbox in list_bboxs:
                x1, y1, x2, y2, _, track_id = item_bbox
                # 撞线检测点,(x1,y1),y方向偏移比例 0.0~1.0
                y1_offset = int(y1 + ((y2 - y1) * 0.5))
                x1_offset = int(x1 + ((x2 - x1) * 0.5))
                # 撞线的点
                y = y1_offset
                x = x1_offset

                # 然后每检测出一个预测框,就将中心点加入队列
                center = (x, y)
                if track_id in pts:
                    pts[track_id].append(center)
                else:
                    pts[track_id] = []
                    pts[track_id].append(center)

                thickness = 2
                cv2.circle(output_image_frame, (center), 1, [255, 255, 255], thickness)

                for j in range(1, len(pts[track_id])):
                    if pts[track_id][j - 1] is None or pts[track_id][j] is None:
                        continue
                    cv2.line(output_image_frame, (pts[track_id][j - 1]), (pts[track_id][j]), [255, 255, 255], thickness)

                if polygon_mask_blue_and_yellow[y, x] == 1:
                    # 如果撞 蓝polygon
                    if track_id not in list_overlapping_blue_polygon:
                        list_overlapping_blue_polygon.append(track_id)
                    # 判断 黄polygon list里是否有此 track_id
                    # 有此track_id,则认为是 UP (上行)方向
                    if track_id in list_overlapping_yellow_polygon:
                        # 上行+1
                        up_count += 1
                        print('up count:', up_count, ', up id:', list_overlapping_yellow_polygon)
                        # 删除 黄polygon list 中的此id
                        list_overlapping_yellow_polygon.remove(track_id)

                elif polygon_mask_blue_and_yellow[y, x] == 2:
                    # 如果撞 黄polygon
                    if track_id not in list_overlapping_yellow_polygon:
                        list_overlapping_yellow_polygon.append(track_id)
                    # 判断 蓝polygon list 里是否有此 track_id
                    # 有此 track_id,则 认为是 DOWN(下行)方向
                    if track_id in list_overlapping_blue_polygon:
                        # 下行+1
                        down_count += 1
                        print('down count:', down_count, ', down id:', list_overlapping_blue_polygon)
                        # 删除 蓝polygon list 中的此id
                        list_overlapping_blue_polygon.remove(track_id)
            # ----------------------清除无用id----------------------
            list_overlapping_all = list_overlapping_yellow_polygon + list_overlapping_blue_polygon
            for id1 in list_overlapping_all:
                is_found = False
                for _, _, _, _, _, bbox_id in list_bboxs:
                    if bbox_id == id1:
                        is_found = True
                if not is_found:
                    # 如果没找到,删除id
                    if id1 in list_overlapping_yellow_polygon:
                        list_overlapping_yellow_polygon.remove(id1)

                    if id1 in list_overlapping_blue_polygon:
                        list_overlapping_blue_polygon.remove(id1)
            list_overlapping_all.clear()
            # 清空list
            list_bboxs.clear()
        else:
            # 如果图像中没有任何的bbox,则清空list
            list_overlapping_blue_polygon.clear()
            list_overlapping_yellow_polygon.clear()

        # 输出计数信息
        text_draw = 'DOWN: ' + str(down_count) + \
                    ' , UP: ' + str(up_count)
        output_image_frame = cv2.putText(img=output_image_frame, text=text_draw,
                                         org=draw_text_postion,
                                         fontFace=font_draw_number,
                                         fontScale=0.75, color=(0, 0, 255), thickness=2)
        cv2.imshow('Counting Demo', output_image_frame)
        cv2.waitKey(1)

    capture.release()
    cv2.destroyAllWindows()

若需要更改模型,只需要更改objdetector.py下面的给出的部分:

OBJ_LIST = ['person', 'car', 'bus', 'truck']
DETECTOR_PATH = 'weights/yolov5m.pt'

总结

本篇文章给出了基于yolov5与Deep Sort的流量统计与轨迹跟踪的实例,在项目中有着实际的应用场景。

下面给出源码地址,欢迎star

https://github.com/JulyLi2019/yolov5-deepsort/releases/tag/V1.0,yolov5-deepsort.zip文件

如果阅读本文对你有用,欢迎一键三连呀!!!

2022年4月15日09:59:53

yolov8 deepsort目标跟踪_python_05