之前我们创建索引,查询数据,都是使用的默认的分词器,分词效果不太理想,会把text的字段分成一个一个汉字,然后搜索的时候也会把搜索的句子进行分词,所以这里就需要更加智能的分词器IK分词器了。
第一: 下载地址:https://github.com/medcl/elasticsearch-analysis-ik/releases ,这里你需要根据你的Es的版本来下载对应版本的IK,这里我使用的是6.3.2的ES,所以就下载ik-6.3.2.zip的文件。
第二: 解压-->在es的安装目录/plugin/下创建ik目录,然后将文件复制到 ik下面即可,完成之后效果如下:
到这里已经完成了,不需要去elasticSearch的 elasticsearch.yml 文件去配置。
第三:重启ElasticSearch
第四:测试效果
#插入测试数据
PUT book/analyze/1
{
"text": "我是中国人"
}
未使用ik分词器的时候测试分词效果:
POST book/_analyze
{
"text": "我是中国人"
}
//结果是:
{
"tokens": [
{
"token": "我",
"start_offset": 0,
"end_offset": 1,
"type": "<IDEOGRAPHIC>",
"position": 0
},
{
"token": "是",
"start_offset": 1,
"end_offset": 2,
"type": "<IDEOGRAPHIC>",
"position": 1
},
{
"token": "中",
"start_offset": 2,
"end_offset": 3,
"type": "<IDEOGRAPHIC>",
"position": 2
},
{
"token": "国",
"start_offset": 3,
"end_offset": 4,
"type": "<IDEOGRAPHIC>",
"position": 3
},
{
"token": "人",
"start_offset": 4,
"end_offset": 5,
"type": "<IDEOGRAPHIC>",
"position": 4
}
]
}
使用IK分词器之后,结果如下:
POST book_v6/_analyze
{
"analyzer": "ik_max_word",
"text": "我是中国人"
}
//结果如下:
{
"tokens": [
{
"token": "我",
"start_offset": 0,
"end_offset": 1,
"type": "CN_CHAR",
"position": 0
},
{
"token": "是",
"start_offset": 1,
"end_offset": 2,
"type": "CN_CHAR",
"position": 1
},
{
"token": "中国人",
"start_offset": 2,
"end_offset": 5,
"type": "CN_WORD",
"position": 2
},
{
"token": "中国",
"start_offset": 2,
"end_offset": 4,
"type": "CN_WORD",
"position": 3
},
{
"token": "国人",
"start_offset": 3,
"end_offset": 5,
"type": "CN_WORD",
"position": 4
}
]
}
对于上面两个分词效果的解释:
1. 如果未安装ik分词器,那么,你如果写 "analyzer": "ik_max_word",那么程序就会报错,因为你没有安装ik分词器
2. 如果你安装了ik分词器之后,你不指定分词器,不加上 "analyzer": "ik_max_word" 这句话,那么其分词效果跟你没有安装ik分词器是一致的,也是分词成每个汉字。
2. 创建指定分词器的索引
索引创建之后就可以使用ik进行分词了,当你使用ES搜索的时候也会使用ik对搜索语句进行分词,进行匹配。
PUT book_v5
{
"settings":{
"number_of_shards": "6",
"number_of_replicas": "1",
//指定分词器
"analysis":{
"analyzer":{
"ik":{
"tokenizer":"ik_max_word"
}
}
}
},
"mappings":{
"novel":{
"properties":{
"author":{
"type":"text"
},
"wordCount":{
"type":"integer"
},
"publishDate":{
"type":"date",
"format":"yyyy-MM-dd HH:mm:ss || yyyy-MM-dd"
},
"briefIntroduction":{
"type":"text"
},
"bookName":{
"type":"text"
}
}
}
}
}
关于ik分词器的分词类型(可以根据需求进行选择):
ik_max_word:会将文本做最细粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种可能的组合;
ik_smart:会做最粗粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,国歌”。如下:
POST book_v6/_analyze
{
"analyzer": "ik_smart",
"text": "我是中国人"
}
//结果
{
"tokens": [
{
"token": "我",
"start_offset": 0,
"end_offset": 1,
"type": "CN_CHAR",
"position": 0
},
{
"token": "是",
"start_offset": 1,
"end_offset": 2,
"type": "CN_CHAR",
"position": 1
},
{
"token": "中国人",
"start_offset": 2,
"end_offset": 5,
"type": "CN_WORD",
"position": 2
}
]
}