5. Flume 案例一

1. 案例场景

A、B两台日志服务机器实时生产日志主要类型为access.log、nginx.log、web.log 现在要求:

把A、B 机器中的access.log、nginx.log、web.log 采集汇总到C机器上然后统一收集到hdfs中。 但是在hdfs中要求的目录为:

/source/logs/access/20180101/** 
/source/logs/nginx/20180101/**
/source/logs/web/20180101/**

2. 场景分析

大数据- Flume经典案例_flume

3. 数据流程处理分析

大数据- Flume经典案例_大数据_02

4、实现

服务器A对应的IP为 192.168.174.100

服务器B对应的IP为 192.168.174.110

服务器C对应的IP为 192.168.174.120

采集端配置文件开发

node01与node02服务器开发flume的配置文件

cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf 
vim exec_source_avro_sink.conf
# Name the components on this agent 
<p class="mume-header " id="name-the-components-on-this-agent-2"></p>
a1.sources = r1 r2 r3
a1.sinks = k1 a1.channels = c1
# Describe/configure the source
<p class="mume-header " id="describeconfigure-the-source-2"></p>
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /export/servers/taillogs/access.log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
## static拦截器的功能就是往采集到的数据的header中插入自己定
## 义的key-value对
<p class="mume-header " id="static拦截器的功能就是往采集到的数据的header中插入自己定-义的key-va a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = access
a1.sources.r2.type = exec
a1.sources.r2.command = tail -F /export/servers/taillogs/nginx.log
a1.sources.r2.interceptors = i2
a1.sources.r2.interceptors.i2.type = static
a1.sources.r2.interceptors.i2.key = type
a1.sources.r2.interceptors.i2.value = nginx
a1.sources.r3.type = exec
a1.sources.r3.command = tail -F /export/servers/taillogs/web.log
a1.sources.r3.interceptors = i3
a1.sources.r3.interceptors.i3.type = static
a1.sources.r3.interceptors.i3.key = type
a1.sources.r3.interceptors.i3.value = web # Describe the sink
<p class="mume-header " id="describe-the-sink-2"></p>
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = node03
a1.sinks.k1.port = 41414 # Use a channel which buffers events in memory
<p class="mume-header " id="use-a-channel-which-buffers-events-in-memory-2"></p>
a1.channels.c1.type = memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity = 10000 # Bind the source and sink to the channel
<p class="mume-header " id="bind-the-source-and-sink-to-the-channel-2"></p>
a1.sources.r1.channels = c1
a1.sources.r2.channels = c1
a1.sources.r3.channels = c1
a1.sinks.k1.channel = c1

服务端配置文件开发

在node03上面开发flume配置文件

cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin/conf 
vim avro_source_hdfs_sink.conf
a1.sources = r1 
a1.sinks = k1
a1.channels = c1
# 定义source
<p class="mume-header " id="定义source"></p>
a1.sources.r1.type = avro
a1.sources.r1.bind = 192.168.174.120
a1.sources.r1.port =41414
# 添加时间拦截器
<p class="mume-header " id="添加时间拦截器"></p>
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$
# 定义channels
<p class="mume-header " id="定义channels"></p>
a1.channels.c1.type = memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity = 10000
# 定义sink
<p class="mume-header " id="定义sink"></p>
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path=hdfs://192.168.174.100:8020/source/logs/%{type}/%Y%m%d
a1.sinks.k1.hdfs.filePrefix =events
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.writeFormat = Text
# 时间类型
<p class="mume-header " id="时间类型"></p>
a1.sinks.k1.hdfs.useLocalTimeStamp = true
# 生成的文件不按条数生成
<p class="mume-header " id="生成的文件不按条数生成"></p>
a1.sinks.k1.hdfs.rollCount = 0
# 生成的文件按时间生成
<p class="mume-header " id="生成的文件按时间生成"></p>
a1.sinks.k1.hdfs.rollInterval = 30
# 生成的文件按大小生成
<p class="mume-header " id="生成的文件按大小生成"></p>
a1.sinks.k1.hdfs.rollSize = 10485760
# 批量写入hdfs的个数
<p class="mume-header " id="批量写入hdfs的个数"></p>
a1.sinks.k1.hdfs.batchSize = 10000
# flume操作hdfs的线程数(包括新建,写入等)
<p class="mume-header " id="flume操作hdfs的线程数包括新建写入等"></p>
a1.sinks.k1.hdfs.threadsPoolSize=10
# 操作hdfs超时时间
<p class="mume-header " id="操作hdfs超时时间"></p>
a1.sinks.k1.hdfs.callTimeout=30000
# 组装source、channel、sink
<p class="mume-header " id="组装source-channel-sink"></p>
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

采集端文件生成脚本

在node01与node02上面开发shell脚本,模拟数据生成

cd /export/servers/shells 
vim server.sh # !/bin/bash

<p class="mume-header " id="binbash"></p>
while true
dodate >> /export/servers/taillogs/access.log;
date >> /export/servers/taillogs/web.log;
date >> /export/servers/taillogs/nginx.log; s
leep 0.5;
done

顺序启动服务

node03启动flume实现数据收集

cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin bin/flume-ng agent -c conf -f conf/avro_source_hdfs_sink.conf -name a1

node01与node02启动flume实现数据监控

cd /export/servers/apache-flume-1.6.0-cdh5.14.0-bin bin/flume-ng agent -c conf -f conf/exec_source_avro_sink.conf -name a1

node01与node02启动生成文件脚本

cd /export/servers/shells 
sh server.sh

5、项目实现截图

大数据- Flume经典案例_大数据_03

大数据- Flume经典案例_nginx_04