代码清单1-20

// Comments: Python code

false_table = dict()
true_table = dict()

def possible_next_moves(m, n):

for i in range(0, m):
yield(i, n)

for i in range(0, n):
if m < i:
yield(m, i)
else:
yield(i, m)

for i in range(0, m):
yield(i, n - m + i)

def can_reach(m, n, m1, n1):
if m == m1 and n == n1:
return False
if m == m1 or n == n1 or m - m1 == n - n1:
return True
else:
return False

def quick_check(m, n, name):
for k,v in false_table.items():
if can_reach(m, n, v[1][0], v[1][1]):
true_table[name] = (True, v[1])
return (True, v[1])
return None

def nim(m, n):
if m > n:
m, n = n, m
name = str(m) + '+' + str(n)

if name in false_table:
return false_table[name]
if name in true_table:
return true_table[name]

check = quick_check(m, n, name)
if check:
return check

for possible in possible_next_moves(m, n):
r = nim(possible[0], possible[1])
if r[0] == False:
true_table[name] = (True, possible)
return (True, possible)
elif can_reach(m, n, r[1][0], r[1][1]):
true_table[name] = (True, r[1])
return (True, r[1])

false_table[name] = (False, (m, n))
return (False, (m, n))


###for testing

def assert_false(m, n):
size = 0
for possible in possible_next_moves(m, n):
size = size + 1
r = nim(possible[0], possible[1])
if r[0] != True:
print 'error!', m, n,'should be false but it has false sub
move',possible
return
print 'all', size, 'possible moves are checked!'

很快,这位工程师又想出了另一种解法,不过这次他不是从n = 1的不安全局面自底向上推理的,而是反其道行之,自顶向下查找,代码如清单1-21,读者不妨研究一下: