1、启动yarn
[hadoop@cloud01 hadoop-2.4.1]$ sbin/start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/app/hadoop-2.4.1/logs/yarn-hadoop-resourcemanager-cloud01.out
hadoop@localhost's password:
localhost: starting nodemanager, logging to /home/hadoop/app/hadoop-2.4.1/logs/yarn-hadoop-nodemanager-cloud01.out
2、查看启动的进程
[hadoop@cloud01 hadoop-2.4.1]$ jps
6113 SecondaryNameNode
6659
NodeManager
5970 DataNode
6760 Jps
6355
ResourceManager
5855 NameNode
ResourceManager:整个yarn的资源调度和管理
NodeManager:本节点资源调度和管理
3、YARN管理界面
4、通过程序验证
4.1 创建words.txt
[hadoop@cloud01 ~]$ more words.txt
hello tom
hello jerry
hello tom
hello world
4.2 上传words.txt到hdfs上
[hadoop@cloud01 ~]$ hdfs dfs -put words.txt hdfs://cloud01:9000/
4.3 使用hadoop内置程序,提交给yarn
[hadoop@cloud01 mapreduce]$ hadoop jar hadoop-mapreduce-examples-2.4.1.jar wordcount /words.txt /output
15/02/01 15:28:20 INFO client.RMProxy:
Connecting to ResourceManager at cloud01/192.168.2.31:8032
15/02/01 15:28:21 INFO input. FileInputFormat: Total input paths to process : 115/02/01 15:28:22 INFO mapreduce. JobSubmitter: number of splits:1
15/02/01 15:28:23 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1422831663687_0002
15/02/01 15:28:23 INFO impl.YarnClientImpl: Submitted application application_1422831663687_0002
15/02/01 15:28:23 INFO mapreduce.Job: The url to track the job: http://cloud01:8088/proxy/application_1422831663687_0002/
15/02/01 15:28:23 INFO mapreduce.Job: Running job: job_1422831663687_0002
15/02/01 15:28:45 INFO mapreduce.Job: Job job_1422831663687_0002 running in uber mode : false
15/02/01 15:28:45 INFO mapreduce.Job: map 0% reduce 0%
15/02/01 15:29:13 INFO mapreduce.Job: map 100% reduce 0%
15/02/01 15:29:30 INFO mapreduce.Job: map 100% reduce 100%
15/02/01 15:29:33 INFO mapreduce.Job: Job job_1422831663687_0002 completed successfully
15/02/01 15:29:34 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=52
FILE: Number of bytes written=185933
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=138
HDFS: Number of bytes written=30
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=26769
Total time spent by all reduces in occupied slots (ms)=11213
Total time spent by all map tasks (ms)=26769
Total time spent by all reduce tasks (ms)=11213
Total vcore-seconds taken by all map tasks=26769
Total vcore-seconds taken by all reduce tasks=11213
Total megabyte-seconds taken by all map tasks=27411456
Total megabyte-seconds taken by all reduce tasks=11482112
Map-Reduce Framework
Map input records=4
Map output records=8
Map output bytes=76
Map output materialized bytes=52
Input split bytes=94
Combine input records=8
Combine output records=4
Reduce input groups=4
Reduce shuffle bytes=52
Reduce input records=4
Reduce output records=4
Spilled Records=8
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=308
CPU time spent (ms)=1570
Physical memory (bytes) snapshot=203378688
Virtual memory (bytes) snapshot=725680128
Total committed heap usage (bytes)=126627840
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=44
File Output Format Counters
Bytes Written=30
4.4 通过hadoop jar 提交yarn的过程,进程变化
[hadoop@cloud01 ~]$ jps
6113 SecondaryNameNode
7689 Jps
6659 NodeManager
5970 DataNode
7541 RunJar
7679 MRAppMaster
6355 ResourceManager
5855 NameNode
YarnChild
RunJar: hadoop jar 时,作为一个客户端提交给yarn
ResourceManager:提交给YARN资源管理器
NodeManager: 每个执行节点管理器
MRAppMaster: 启动一个MapReduce通过该进程完成
YarnChild: 执行MapReduce的进程
4.5 验证查看结果
一、通过YARN管理界面
二、通过命令行方式查看
[hadoop@cloud01 ~]$ more words.txt
hello tom
hello jerry
hello tom
hello world
[hadoop@cloud01 ~]$ hdfs dfs -text /output/part-r-00000
hello 4
jerry 1
tom 2
world 1